Supplemental Figure S1

Figure S1. IR is the predominant receptor in differentiated muscle and Deletion of IR and IGF1R in muscle dramatically decreases muscle size and Function. (A) Copy number of insulin receptor and IGF-1 receptor mRNA determined by qPCR in muscle from 8-week-old male mice (n=7) was performed and quantitated using recombinant plasmid standard as in Figure 1A (**-p<0.01 vs. insulin receptor, TA data is the same as presented in Figure 1A). (B) IR and IGF1R western blot in primary mouse myoblasts during differentiation. (C) QPCR of quadriceps from fasted control, M-IR^{-/-}, M-IGF1R^{-/-}, and MIGIRKO mice (n=16 pooled controls and 4-8 knockouts). (D) Body weight and (E) muscle weights normalized to body weight from 7-8 week old control M-IR^{-/-}, M-IGF1R^{-/-}, and MIGIRKO. (F) H&E staining of diaphragm muscle from control and MIGIRKO mice (bar = 200 µm). (G) Fiber type density in soleus (bar = 100 µm). (*-p<0.05,**-p<0.01 vs. control; Student's t-test for 2 groups, ANOVA for 4)

Figure S2. Protein synthesis, mTOR signaling and Muscle Amino Acid levels are increased in MIGIRKO mice. (A) Protein fractional synthesis rates were measured using ¹³Clabeled phenylalinine in Liver (n=11). (B) Western blots for phosphorylation of mTOR and S6 in quadriceps from MIGIRKO and control mice treated with 1.2 mg/kg rapamycin for 12-14 days. (C) Muscle weight from MIGIRKO and control mice treated with rapamycin for 12-14 days (n=4-5 per group). (D) Essential amino acid (AA) levels measured by metabolomic analysis in hind limb muscle from M-IR^{-/-}, M-IGF1R^{-/-}, and MIGIRKO mice (n=18 pooled controls and 5-12 KO per group). Fold change of (E) Branch chain AA (BCAA), (F) Aromatic AA, and (G) other essential AA in knockout mice relative to control. (*-p<0.05,**-p<0.01 vs. control; ANOVA)

Supplemental Figure S3 Continued

Figure S3. Ubiquitin-Proteasome subunits, LC3 isoforms, and autophagosomes are increased in MIGIRKO muscle. (A) Western blot and densitometry of total poly-ubiquitin (Ub) proteins in gastrocnemius from MIGIRKO and control mice treated with MG132 for 3 days. GAPDH normalizer blot is the same as depicted in Figure 2G as it was on the same gel. (B) Western blot of proteasomal subunits of the 19S regulatory complex (Rpt5/S6a) and the 20S core complex in quadriceps from MIGIRKO and control mice either fed or fasted overnight. (C) Western blots for LC3 using isoform-specific antibodies (LC3A – Cell Signaling #4599; LC3B – Cell Signaling #2775) in quadriceps muscle from fed or overnight-fasted MIGIRKO and control mice treated with either saline or 0.4 mg/kg colchicine for 2 days. (D) Densitometric analysis of LC3-II and LC3-II normalized to GAPDH from Figure 3 panel A using LC3A/B antibody (Cell Signaling #12741) (n=3-6 per group). (E) (F) Representative electron micrographs from soleus muscle of fed MIGIRKO and control mice showing double-membraned autophagosomes. (*p<0.05, **-p<0.01 control vs. MIGIRKO; †-p<0.05, ††-p<0.01 fed vs. fasted, t-test for 2 groups, ANOVA for more)

Figure S4. M-IR^{-/-} **mice display muscle atrophy, muscle dysfunction and impaired autophagy as they age.** (A) Western blot of LC3A in quadriceps from 52-week old M-IR^{-/-}, M-IGF1R^{-/-}, and control mice treated for 2 days with colchicine or saline. (B) Muscle weights from 52week-old M-IR^{-/-}, M-IGF1R^{-/-}, and control mice. (C) Distance run on acute treadmill test and (D) grip strength from 52-week old M-IR^{-/-}, M-IGF1R^{-/-}, and control mice. (**-p<0.01 vs. control, student's t-test)

Figure S5. Deletion of FoxO1/3/4 in MIGIRKO mice normalizes body weight, attenuates mTOR signaling and decreases Akt activation. (A) mRNA levels of IR, IGF1R and FoxO isoforms in MIGIRKO, M-FoxO TKO, and M-QKO TA muscle relative to littermate lox controls. (B) Body weights of control and knockout mice (n=5-7 per group). (C) Densitometry of western blots from Figure 6B (n=5-6 per group). (D) Percent of LC3A-positive myofibers per high power field from Figure 6 panel C. (*-p<0.05,**-p<0.01 vs. Control, †-p<0.05, ††-p<0.01 MIGIRKO vs. M-QKO, ANOVA).

Figure S6. Deletion of FoxO1/3/4 in MIGIRKO mice attenuates ubiquitination and Amino Acid differences. (A) Western Blot and densitometry of total poly-ubiquitin proteins in Control, MIGIRKO, M-FoxO TKO, and M-QKO quadriceps (n=5-6 per group). (B) Essential amino acid (AA) levels in hind limb muscle from MIGIRKO, M-FoxO TKO, and M-QKO (n=6 per group). Fold change of (C) Branch chain AA (BCAA), (D) Aromatic AA, and (E) other essential AA in knockout mice relative to control. (*-p<0.05,**-p<0.01 vs. Control, \dagger ;-p<0.01 MIGIRKO vs. M-QKO, ANOVA). ND – not determined.

Figure S7. Deletion of individual FoxOs does not reverse autophagy in MIGIRKO, while deletion of both FoxO1 and FoxO3 partially rescues oxidative muscle atrophy in MIGIRKO. (A) Western Blot of autophagy markers in TA muscle from mice in Figure 7F-7G. GAPDH normalizer blot is the same as depicted in Figure 7F as it was on the same gel. (B) mRNA levels of FoxO isoforms in 5 different muscle groups from control mice (n=4-8). (C) Body weights and (D) muscle weight normalized to body weight of control and MIG-FoxO1/O3 KO mice at 8 weeks of age (n=2). (E) Percent decrease in muscle mass in MIGIRKO and MIG-FoxO1/O3 KO relative to littermate controls (n=2). (**-p<0.01 vs. Quad, Student's t-test)

Common	Gene	5' primer	3' primer			
name	name					
mRNA Primers						
IR	Insr	AAATGCAGGAACTCTCGGAAGCCT	ACCTTCGAGGATTTGGCAGACCTT			
IGF1R	lgf1r	ATCGCGATTTCTGCGCCAACA	TTCTTCTCTTCATCGCCGCAGACT			
IGF-1	lgf1	GACCGAGGGGCTTTTACTTC	GGGGCACAGTACATCTCCA			
Myf5	Myf5	AATGCCATCCGCTACATTGAGAGC	TGTCAAAGCTGCTGTTCTTTCGGG			
MyoD	Myod1	AGCACTACAGTGGCGACTCAGAT	TCCACTATGCTGGACAGGCAGT			
Myogenin	Myog	TTGCTCAGCTCCCTCAACCAGGA	AGATTGTGGGCGTCTGTAGGGTCA			
Myostatin	Mstn	TGGCTCAAACAGCCTGAATCCAAC	TGGGTGTGTCTGTCACCTTGACTT			
Follistatin	Fst	AGTGACTTACTCCAGCGCCT	TTACTGTCAGGACACAGCTCATCG			
Actin (SkM)	Acta1	TTCAACGTGCCTGCCATGTATGTG	ATGATGGCGTGTGGCAGGGCATA			
Desmin	Des	ACCAGGACCTGCTCAATGTGAAGA	TCGGAAGTTGAGAGCAGAGAAGGT			
MCK	Ckm	GCAGCAGCTCATTGATGACCACTT	ACCTCCTTCATATTGCCTCCCTTC			
Myosin I	Myh7	ACCAGGCCCTTTGACCTCAAGAAA	TCTTGTCGAACTTGGGTGGGTTCT			
Myosin IIa	Myh2	TCACATCCAACAAGAAGCCAGAGC	CCCTGGCTGACAAATGGGTAATCA			
Myosin IIb	Myh4	AGTCCCAGGTCAACAAGCTG	TTTCTCCTGTCACCTCTCAACA			
Myosin IIx	Myh1	AGTCCCAGGTCAACAAGCTG	CACATTTTGCTCATCTCTTTG			
p27 Kip1	Cdkn1b	GGGGAACCGTCTGAAACATT	AGTGTCCAGGGATGAGGAAG			
Gadd45a	Gadd45a	GGATCCTTCCATTGTGATGAA	TGCTACTGGAGAACGACGC			
4E-BP	Eif4ebp1	CCT CCT TGT GCC TGT GTC TA	GCC TAA GGA AAG ATG GGT GT			
Cathepsin	Ctsl	TATCCCTCAGCAAGAGAAAGCCCT	TCCTTCATAGCCATAGCCCACCAA			
L						
p62	Sqstm1	TCTGGGGTAGTGGGTGTCAG	AGAATGTGGGGGGAGAGTGTG			
LC3A	Map1lc3a	TCTGGTCCCAGACCATGTTA	GGTTGACCAGCAGGAAGAAG			
LC3B	Map1lc3b	CACTGCTCTGTCTTGTGTAGGTTG	TCGTTGTGCCTTTATTAGTGCATC			
Lamp2a	Lamp2	ACAACCTGACTCCTGTCGTTCAGA	AGTTGGAGTTGGAGTGGGTGTTGA			
Gabarapl 1	Gabarapl 1	GTCATCGTGGAGAAGGCTCCTAAA	GGAGGGATGGTGTTGTTGACAAAG			
Psma1	Psma1	CGTTCTCAATCAGCTCGTACTT	CTGCAGGGAGTGTTTCTCTT			
Psmb4	Psmb4	TGTGGACATGCTTGGTGTAG	CTGGCTGCTTCTCTAGAACTT			
Psmc4	Psmc4	CTTGGAAGCTGTGGATCAGAA	TCCCGGTCGATGGTACTC			
Psmd11	Psmd11	CTAGATATGGAAGCAGCCACAG	CCAATGCTTGGCGTAAGAAAG			
Atrogin-1	Fbxo32	CTGTGCTGGTGGGCAACATTAACA	CGTCACTCAGCCTCTGCATGAT			
MuRF-1	Trim63	ATGAAGTGATCATGGACCGGCA	TTGCACAAGGAGCAAGTAGGCA			
MUSA1	Fbxo30	TCG TGG AAT GGT AAT CTT GC	CCT CCC GTT TCT CTA TCA CG			
SMART	Fbxo21	TCA ATA ACC TCA AGG CGT TC	GTT TTG CAC ACA AGC TCC A			
UBC	Ubc	CGTCGAGCCCAGTGTTACCACC	ACCTCCCCCATCACACCCAAGA			
FoxO1	Foxo1	TGCTGTGAAGGGACAGATTG	GAGTGGATGGTGAAGAGCGT			
FoxO3	Foxo3	ACAAACGGCTCACTTTGTCCCAGA	TCTTGCCCGTGCCTTCATTCT			
FoxO4	Foxo4	GGTGCCCTACTTCAAGGACA	AGCTTGCTGCTGCTATCCAT			
TBP	Tbp	ACCCTTCACCAATGACTCCTATG	TGACTGCAGCAAATCGCTTGG			
GAPDH	Gapdh	TGTCGTGGAGTCTACTGGTGTCTT	TCTCGTGGTTCACACCCATCACAA			

Supplemental Table S1. Primers for QPCR of mouse genes.

Protein	Vendor	Catalog	Dilution				
		number					
Immunofluorescence Antibodies							
LC3A	Cell Signaling	4599	1:200				
Laminin	Sigma	L9393	1:200				
Myosin IIa	DSHB University of lowa	SC-71	1:200				
Myosin heavy chain, slow	DSHB University of lowa	BA-F8	1:200				
Alexa-Fluor-594 Goat anti mouse	Life Technologies	#A-11032	1:500				
Alexa-Fluor-488 Goat anti rabbit	Life Technologies	#A-11008	1:500				
Western Blot Antibodies							
p-mTOR S2448	Cell Signaling	5536	1:1000				
mTOR	Cell Signaling	2983	1:1000				
p-S6K T389	Cell Signaling	9205	1:1000				
S6K	Cell Signaling	9202	1:1000				
p-S6	Cell Signaling	2211	1:1000				
S6	Cell Signaling	2317	1:1000				
FoxO1	Cell Signaling	2880	1:1000				
FoxO3	Cell Signaling	12829	1:1000				
FoxO4	Abcam	128908	1:1000				
GAPDH	Cell Signaling	5174	1:1000				
IGF1R	Cell Signaling	3027	1:1000				
IR	Santa Cruz	SC-711	1:1000				
19S proteasome subunit	Enzo Life Sciences	BML-PW8870	1:1000				
		BML-PW8155-					
20S proteasome subunit	Enzo Life Sciences	0025	1:1000				
LC3A/B (Used for all blots except Supplemental Fig S3C)	Cell Signaling	12741	1:1000				
LC3A	Cell Signaling	4599	1:1000				
LC3B	Cell Signaling	2775	1:1000				
p62/SQSTM1	Cell Signaling	5114	1:500				
p-ULK S555	Cell Signaling	5869	1:1000				
Ulk1	Cell Signaling	8054	1:1000				
PARP	Cell Signaling	9542	1:500				
p-Akt S473	Cell Signaling	9271	1:1000				
Akt	Cell Signaling	4685	1:1000				

Supplemental Table S2. Antibodies used.

Full Uncut Gels

Full Uncut Gels from Supplemental Figures

 Figure S3C

GAPDH for Figure S6A is the same as Figure 7F above since they were run on the same gels.