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The recent clinical success of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies represents a
paradigm shift in cancer immunotherapy. Unfortunately, application of CAR T cell–mediated therapy for solid tumors has
so far been disappointing, and the reasons for this poor response in solid tumors remain unknown. In this issue of the JCI,
Cherkassky and colleagues report on their use of a murine model of human pleural mesothelioma to explore potential
factors that limit CAR T cell efficacy. Their studies have uncovered the importance of the tumor microenvironment in the
inhibition of CAR T cell functions, revealed a critical role for the programmed death-1 (PD-1) pathway in CAR T cell
exhaustion within the tumor microenvironment, and demonstrated improved antitumor effects with a CAR T cell–intrinsic
PD-1 blockade strategy using a dominant negative form of PD-1. Together, the results of this study lay the groundwork for
further evaluation of mechanisms underlying CAR T cell immune evasion within the tumor microenvironment for the
improvement of CAR T cell–mediated therapy for solid tumors.
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CAR T cells for cancer 
immunotherapy
T cells that have been genetically engi-
neered to express a chimeric antigen 
receptor (CAR) have emerged as one of the 
most promising therapeutic approaches for 
cancer (1). Along with immune checkpoint 
blockade (2), CAR T cell therapy has trig-
gered a paradigm shift in cancer immuno-
therapy. This groundbreaking advance has 
also inspired the biotech and pharmaceuti-
cal industry to invest in and develop CAR 
T cell therapies for various types of cancer.

CAR technology was first developed 
in the mid-1980s (3) and later modified 
by the Eshhar group to use a single-chain 
variable fragment (scFv) derived from 
both heavy and light chains of a monoclo-
nal antibody (4, 5). The prototype CAR is 
composed of an extracellular scFv domain, 
which serves as the binding region for spe-
cific tumor-associated antigens (TAAs), a 
transmembrane domain, and an intracel-
lular signaling domain derived from the 

T cell receptor (TCR), usually the CD3ζ 
chain, which triggers T cell activation 
(Figure 1). Most CAR-encoding constructs 
are introduced into T cells via plasmid 
or mRNA transfection or by viral vector 
transduction. These CAR T cells recognize 
unprocessed cell-surface antigens directly 
and destroy tumor cells independently of 
major histocompatibility complex (MHC). 
This recognition process is in contrast with 
that of conventional T cells, which rely on 
their native TCRs for recognition of tumor 
antigens presented by MHC. The compo-
sition of first-generation CARs involves 
the CD3ζ intracellular signaling domain 
alone (Figure 1). Second- and third-gener-
ation CARs add one and two costimulatory 
domains, respectively, to the CD3ζ intra-
cellular regions, such as CD28 and CD137 
(4-1BB), in an effort to augment the prolif-
eration and persistence of CAR T cells (6). 
Second-generation CAR T cells that spe-
cifically target the B cell–specific antigen 
CD19 have shown impressive clinical out-

comes in treating patients with relapsed or 
refractory B cell malignancies, including 
acute and chronic lymphocytic leukemia 
(7–9), with a complete remission (CR) rate 
of more than 80% to 90% achieved in 
patients with acute lymphocytic leukemia. 
As such, the United States Food and Drug 
Administration (FDA) has recently granted 
the “breakthrough therapy” designation to 
the anti-CD19 CAR T cell therapy (10).

A growing number of CAR T cells 
designed to target solid tumors have been 
evaluated in clinical trials; however, the 
results so far have been modest (11). The 
trials using anti-diganglioside GD2 CAR 
T cells for neuroblastoma and anti-HER2 
CAR to target HER2+ sarcoma are con-
sidered to be the most positive so far. An 
anti-GD2 CAR T cell trial yielded a CR 
rate of 27% (3 of 11 patients) (12), and an 
anti-HER2 CAR T cell trial showed 4 of 17 
patients with stable disease (13). The rea-
son CAR T cells do not result in a robust 
response in solid tumors remains to be elu-
cidated. Multiple barriers have been sug-
gested, including suboptimal TAAs for CAR 
T cell targeting, an inability of CAR T cells 
to traffic to and infiltrate solid tumors, and 
the immunosuppressive tumor microenvi-
ronment (11). It has been well recognized 
that even after successful trafficking and 
infiltration of T cells into growing tumors, 
these tumor-infiltrating lymphocytes 
(TILs) are often ineffective at tumor elimi-
nation in vivo, but are able to proliferate 
and exert effector functions when removed 
from the immunosuppressive environment. 
Within the tumor microenvironment, TILs 
must overcome function-suppressing chal-
lenges including immune suppressor cells, 
such as Tregs, myeloid-derived suppres-
sor cells (MDSCs), and tumor-associated 
macrophages (TAMs); the presence of cyto-
kines and soluble factors associated with 
immunosuppression, such as TGF-β and 
IL-10; and T cell–intrinsic, negative regu-
latory mechanisms, such as upregulation 
of ligands for the inhibitory receptor pro-
grammed death-1 (PD-1) that downmodu-
late T cell activity (14). Thus, the same 
immunosuppressive microenvironment 
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The recent clinical success of chimeric antigen receptor (CAR) T cell 
therapy for B cell malignancies represents a paradigm shift in cancer 
immunotherapy. Unfortunately, application of CAR T cell–mediated 
therapy for solid tumors has so far been disappointing, and the reasons 
for this poor response in solid tumors remain unknown. In this issue of the 
JCI, Cherkassky and colleagues report on their use of a murine model of 
human pleural mesothelioma to explore potential factors that limit CAR 
T cell efficacy. Their studies have uncovered the importance of the tumor 
microenvironment in the inhibition of CAR T cell functions, revealed a critical 
role for the programmed death-1 (PD-1) pathway in CAR T cell exhaustion 
within the tumor microenvironment, and demonstrated improved antitumor 
effects with a CAR T cell–intrinsic PD-1 blockade strategy using a dominant 
negative form of PD-1. Together, the results of this study lay the groundwork 
for further evaluation of mechanisms underlying CAR T cell immune evasion 
within the tumor microenvironment for the improvement of CAR T cell–
mediated therapy for solid tumors.
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PD-1 expression observed on CD28-CD3ζ 
CAR T cells. Furthermore, PD-1 antibody 
blockade restored the effector function of 
exhausted CD28-CD3ζ CAR T cells in vitro 
and in vivo. Having shown a critical role of 
PD-1 signaling in CAR T cell exhaustion 
in vivo, Cherkassky and colleagues went 
on to generate CD28-CD3ζ CAR T cells 
that express a dominant negative form of 
PD-1 (CD28-CD3ζ-dnPD-1), and infusion 
of CD28-CD3ζ-dnPD-1 CAR T cells into 
tumor-bearing mice led to functional per-
sistence, superior antitumor effect, and 
prolonged survival.

The data presented by Cherkassky and 
colleagues have demonstrated the impor-
tance of tumor-mediated inhibition of CAR 
T cell effector functions, revealed a critical 
role for the PD-1 pathway in CAR T cell 
exhaustion within the solid tumor micro-
environment, and enabled the authors to 
provided an exciting and translatable strat-
egy that involves using dnPD-1 CAR T cells 
alone or CAR T cells with PD-1 antibody 
blockade in an effort to improve the out-
come of CAR T cell–mediated therapy for 
solid tumors. There are some limitations 
with this study that should be considered. 
First, the use of a xenograft tumor model 
in immunocompromised NSG mice, which 
lack endogenous T cells and NK cells, may 
prevent a comprehensive evaluation for 
the contribution of other immunosuppres-
sive mechanisms, such as Tregs, within 
the tumor microenvironment. In addition, 
it should be noted that these immunode-
ficient mice are not adequate to evaluate 
potential toxicities associated with CAR T 
cell infusion, as they lack pivotal immune 
cells and effector molecules. Thus, when 
such a model system is used to illustrate the 
CAR T cell response against human tumors, 
results should be interpreted with caution 
and these important findings will need to 
be confirmed in immunocompetent mice, 
ideally in a model of endogenously arising 
tumors. Second, the mechanism or mecha-
nisms for inhibition of CAR T cell function 
may vary with different tumors, given the 
complexity of the tumor microenviron-
ment. Thus, additional tumor models will 
be required to assess the generalizability 
of the PD-1 pathway in suppressing CAR T 
cell function and to identify other potential 
mechanisms of immune evasion. Indeed, 
the majority of mice treated with CD28-
CD3ζ-dnPD-1 CAR T cells or CD28-CD3ζ 

adoptive transfer of anti-HER2 CAR T 
cells in combination with PD-1 blockade 
led to marked tumor regression (18). In 
this issue, Cherkassky and colleagues 
report on the effect PD-1–mediated T cell 
exhaustion has on anti-mesothelin CAR 
T cells and the generation of CAR T cells 
devoid of PD-1 to explore a cell-intrinsic 
checkpoint blockade strategy for improv-
ing the outcome of CAR T cell therapy in 
a xenograft model of human pleural meso-
thelioma in immunodeficient (NSG) mice 
(19). The authors performed a compre-
hensive analysis of the effector functions 
of intrapleurally infused CAR T cells in 
their model and have convincingly shown 
that second-generation CD28-CD3ζ or 
4-1BB-CD3ζ CAR T cells are subject to 
suppression of effector functions, as cyto-
lytic activity and cytokine secretion were 
inhibited in these cells upon tumor antigen 
encounter in vivo. Interestingly, although 
CAR T cell persistence was enhanced to 
a similar degree by the inclusion of either 
4-1BB or CD28 costimulatory signals, only 
4-1BB-CD3ζ CAR T cells could eradicate 
tumors at a lower T cell dose. The abil-
ity of 4-1BB-CD3ζ CAR T cells to func-
tion at a lower dose was accompanied by 
relative resistance to exhaustion within 
the tumor microenvironment. Moreover, 
Cherkassky and colleagues have shown 
that PD-1 ligands on tumor cells and PD-1 
on the infused CAR T cells are upregulated 
in vivo, with a relatively higher level of 

that inhibits the activity of endogenous 
TILs might also prevent CAR T cells from 
generating effective antitumor responses.

CAR T cells with immune 
checkpoint blockade
A better understanding of the immune-
suppression mechanisms within the tumor 
microenvironment has led to the recent 
success of immune checkpoint therapy 
with antibodies that block cytotoxic T-lym-
phocyte–associated protein 4 (CTLA-4) 
and PD-1 pathways in cancer patients (2). 
Blockade of PD-1 and its ligand PD-L1 
is currently among the most promising 
therapies in clinical oncology. Antibodies 
that target the PD-1 pathway have been 
approved by the FDA for the treatment of 
solid tumors, such as melanoma and non–
small cell lung cancer, and ongoing efforts 
to expand the indication for the treatment 
of other solid tumors and Hodgkin’s lym-
phoma are underway (15).

Recent studies have indicated that 
infused CAR T cells express PD-1 and, 
therefore, are susceptible to PD-1–medi-
ated suppression (16, 17). An obvious next 
step is to explore whether concurrent 
immune checkpoint blockade improves 
the outcome of CAR T cell therapies in 
solid tumors. An initial proof-of-concept 
study has already shown that blocking 
PD-1 immunosuppression can enhance 
the efficacy of CAR T cell therapy in a 
murine model of HER2+ tumors, where 

Figure 1. CAR T cell design. All CARs contain an extracellular antigen-binding domain derived from 
an scFv that is composed of both the heavy and light chains of a TAA-targeting monoclonal antibody 
and an intracellular-signaling domain that is usually derived from the TCR CD3ζ chain to activate 
T cells. Only the CD3ζ signaling domain is present in first-generation CARs. For second-generation 
CARs, one additional costimulatory domain, such as CD28 or 4-1BB, is added, while third-generation 
CARs contain two costimulatory domains.
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In summary, the work by Cherkassky 
and colleagues represents an exciting 
development in the CAR T cell field. 
Continued efforts to improve our under-
standing of how CAR T cell function is 
suppressed within the tumor microenvi-
ronment will provide important insights 
into the design of more effective CAR T 
cell therapies for solid tumors.
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