p53 localization at centrosomes during mitosis and postmitotic checkpoint are ATM-dependent and require serine 15 phosphorylation

A Tritarelli, E Oricchio, M Ciciarello… - Molecular biology of …, 2004 - Am Soc Cell Biol
A Tritarelli, E Oricchio, M Ciciarello, R Mangiacasale, A Palena, P Lavia, S Soddu, E Cundari
Molecular biology of the cell, 2004Am Soc Cell Biol
We recently demonstrated that the p53 oncosuppressor associates to centrosomes in
mitosis and this association is disrupted by treatments with microtubule-depolymerizing
agents. Here, we show that ATM, an upstream activator of p53 after DNA damage, is
essential for p53 centrosomal localization and is required for the activation of the postmitotic
checkpoint after spindle disruption. In mitosis, p53 failed to associate with centrosomes in
two ATM-deficient, ataxiatelangiectasia–derived cell lines. Wild-type ATM gene transfer …
We recently demonstrated that the p53 oncosuppressor associates to centrosomes in mitosis and this association is disrupted by treatments with microtubule-depolymerizing agents. Here, we show that ATM, an upstream activator of p53 after DNA damage, is essential for p53 centrosomal localization and is required for the activation of the postmitotic checkpoint after spindle disruption. In mitosis, p53 failed to associate with centrosomes in two ATM-deficient, ataxiatelangiectasia–derived cell lines. Wild-type ATM gene transfer reestablished the centrosomal localization of p53 in these cells. Furthermore, wild-type p53 protein, but not the p53-S15A mutant, not phosphorylatable by ATM, localized at centrosomes when expressed in p53-null K562 cells. Finally, Ser15 phosphorylation of endogenous p53 was detected at centrosomes upon treatment with phosphatase inhibitors, suggesting that a p53 dephosphorylation step at centrosome contributes to sustain the cell cycle program in cells with normal mitotic spindles. When dissociated from centrosomes by treatments with spindle inhibitors, p53 remained phosphorylated at Ser15. AT cells, which are unable to phosphorylate p53, did not undergo postmitotic proliferation arrest after nocodazole block and release. These data demonstrate that ATM is required for p53 localization at centrosome and support the existence of a surveillance mechanism for inhibiting DNA reduplication downstream of the spindle assembly checkpoint
Am Soc Cell Biol