[HTML][HTML] K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis

L Liu, S Zhu, Z Gong, BC Low - PloS one, 2008 - journals.plos.org
L Liu, S Zhu, Z Gong, BC Low
PloS one, 2008journals.plos.org
The RAS small GTPases orchestrate multiple cellular processes. Studies on knock-out mice
showed the essential and sufficient role of K-RAS, but not N-RAS and H-RAS in embryonic
development. However, many physiological functions of K-RAS in vivo remain unclear.
Using wild-type and fli1: GFP transgenic zebrafish, we showed that K-ras-knockdown
resulted in specific hematopoietic and angiogenic defects, including the impaired
expression of erythroid-specific gene gata1 and ße3-hemoglobin, reduced blood circulation …
The RAS small GTPases orchestrate multiple cellular processes. Studies on knock-out mice showed the essential and sufficient role of K-RAS, but not N-RAS and H-RAS in embryonic development. However, many physiological functions of K-RAS in vivo remain unclear. Using wild-type and fli1:GFP transgenic zebrafish, we showed that K-ras-knockdown resulted in specific hematopoietic and angiogenic defects, including the impaired expression of erythroid-specific gene gata1 and ße3-hemoglobin, reduced blood circulation and disorganized blood vessels. Expression of either K-rasC40 that links to phosphoinositide 3-kinase (PI3K) activation, or Akt2 that acts downstream of PI3K, could rescue both hematopoietic and angiogenic defects in the K-ras knockdown. Consistently, the functional rescue by k-ras mRNA was significantly suppressed by wortmannin, a PI3K-specific inhibitor. Our results provide direct evidence that PI3K-Akt plays a crucial role in mediating K-ras signaling during hematopoiesis and angiogenesis in vivo, thus offering new targets and alternative vertebrate model for studying these processes and their related diseases.
PLOS