#### **Supplementary methods**

#### Western blot

5x10<sup>6</sup>-1x10<sup>7</sup> cells were used for protein extraction with cell lysis buffer (Mammalian Cell Lysis Kit, Sigma). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed with 50 ug protein per sample, which was heated before at 70°C for 10 min in lithium dodecyl sulfate (LDS) sample buffer and sample reducing agent. Samples were run in a 10% polyacrylamide gel (bistris) in 2-morpholinoethanesulfonic acid (MES) SDS running buffer. Proteins were blotted onto a methanol-activated polyvinylidene difluoride (PVDF) membrane in transfer buffer (all buffer and components from Novex, Life Technologies). After blocking of the membrane, it was incubated with anti-NY-ESO-1 antibody 1:750 (E978, Sigma) at 4°C overnight. Then the membrane was incubated with goat anti-mouse IgG conjugated to horse radish peroxidase (HRP; Santa Cruz Biotechnology) 1:5000 and chemiluminescence was detected by Lumi-Imager F1 (Roche) after application of Western blotting Luminol Reagent (Santa Cruz). For loading control, actin was analyzed after incubation of the membrane with anti-β-actin-HPR (AC-15, Sigma) 1:30000.

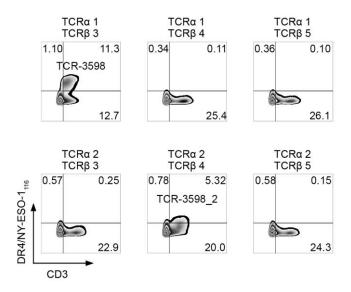
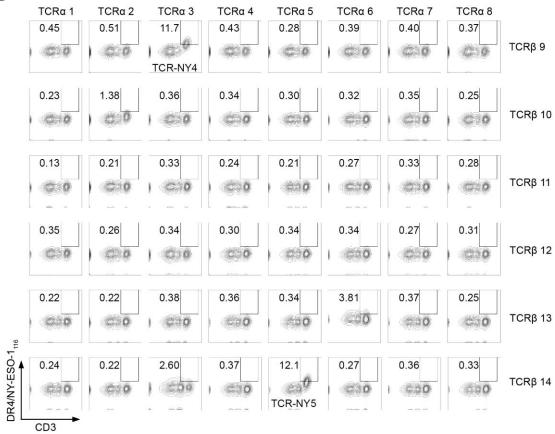
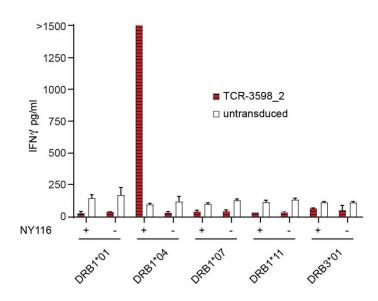
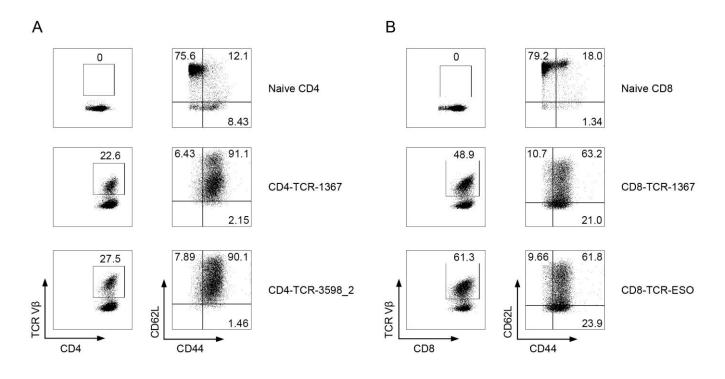
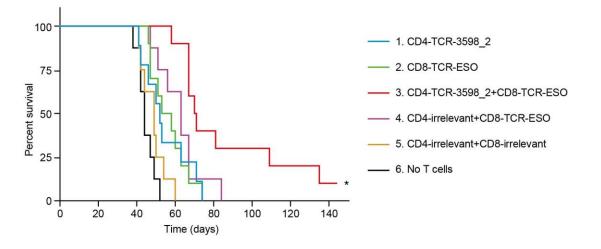



Figure S1 Combinatorial expression of TCR $\alpha$  and  $\beta$  chains isolated from NY-ESO-1-reactive CD4 T cells from ABabDR4 mouse 3598 revealed two DR4/NY-ESO-1<sub>116</sub> tetramer binding TCRs. Two TCR $\alpha$  and three TCR $\beta$  chains isolated from NY-ESO-1-reactive CD4 T cells (Figure 1B) were expressed in different combinations in TCR-deficient Jurkat76/CD4 cells and stained for CD3 and with DR4/NY-ESO-1<sub>116</sub> tetramer.

| А                           | TOD (          | TOD 0          | TOD. 0         | TOD. (         | T00- 5         | TOD. 0         |                |
|-----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                             | TCRα 1<br>0.28 | TCRα 2<br>14.8 | TCRα 3<br>2.95 | TCRα 4<br>2.21 | TCRα 5<br>1.98 | TCRα 6<br>0.24 |                |
|                             |                | 14.0           | 2.95           | 2.21           | 1.98           |                | TCRβ 7         |
|                             | 1 (25)0        |                |                | 1 (C.90)       | Same of the    | 1 (2.2         | TCRp /         |
|                             | din in         | TCR-NY0        |                |                |                |                |                |
|                             | 0.29           | 0.28           | 0.27           | 0.25           | 0.50           | 0.20           |                |
|                             | 000            | 100            | 0630           | CS 0           | 1              | 650            | TCRβ 8         |
|                             |                |                |                |                |                |                |                |
|                             | 0.42           | 0.23           | 0.26           | 0.07           | 0.31           | 0.40           |                |
|                             |                | 0.23           | 0.26           | 0.37           | 0.31           | 0.40           | TOPRO          |
|                             | 0000           | 1 010          | 0.00           | C 10           | (C) P          | 1 (640         | TCRβ 9         |
|                             |                |                |                |                |                |                |                |
|                             | 0.34           | 0.38           | 0.43           | 0.30           | 31.3           | 0.27           |                |
|                             | 000            | 50             | 0250           | 0              | 1              |                | <b>TCRβ 10</b> |
|                             |                |                | 100 C 10       |                | TCR-NY2        | , all Bree     |                |
|                             | 0.01           | 0.00           | 22.0           | 0.00           | 0.00           | 0.05           |                |
|                             | 0.31           | 0.23           | 30.2           | 0.30           | 0.23           | 0.25           | <b>TODO</b> (/ |
|                             | 000            | 0000           | 69             | C00            | 0 000          | (C)0           | TCRβ 11        |
|                             | -              |                | TCR-NY1        | 100            |                |                |                |
|                             | 0.33           | 0.24           | 0.21           | 0.23           | 0.18           | 0.30           |                |
|                             | 200            |                | 650            | 220            | 0000           | 0.025          | TCRβ 12        |
| Q                           |                |                |                |                |                |                |                |
| -1                          |                |                |                |                |                |                |                |
| <b>∎</b> ESC                | 0.26           | 0.45           | 0.19           | 0.26           | 0.16           | 10.9           | <b>TODO (0</b> |
| ۲×۷                         | 000            | 1 6:0          | CO             |                |                | 1 (037         | TCRβ 13        |
| DR4/NY-ESO-1 <sub>116</sub> | <b>_</b>       |                |                |                |                | TCR-NY3        |                |
|                             | CD3            |                |                |                |                |                |                |

В



Figure S2 Combinatorial expression of TCR $\alpha$  and  $\beta$  chains isolated from human PBL cultures revealed DR4/NY-ESO-1<sub>116</sub> tetramer binding TCRs. TCR $\alpha$  and  $\beta$  chains isolated from two PBL in vitro cultures (A and B) were expressed in different combinations in TCR-deficient 58/CD4 cells and stained for CD3 and with DR4/NY-ESO-1<sub>116</sub> tetramer. TCR chains were considered if they occurred at least twice in 31 or 32 clones sequenced. TCR NY0 was not considered in further experiments, because initial tetramer staining technically failed.



**Figure S3 TCR-3598\_2 is exclusively restricted to HLA-DR4**. TCR-transduced CD4 T cells were cocultured with K562 cells expressing different HLA-DR molecules. NY-ESO-1<sub>116</sub> peptide (NY116) was added where indicated. After overnight incubation IFNy was measured in the supernatant. Mean values of intra-assay duplicates with standard deviation are shown. The results are representative of two independent experiments.



**Figure S4 Phenotype of T cells used for adoptive transfer. (A, B)** CD4 (A) and CD8 T cells (B) used for adoptive transfer were stained for CD4 or CD8, respectively, as well as for V $\beta$  of the transduced TCR (TRBV2 for TCR-3598\_2, TRBV12 for TCR-ESO, TRBV28 for TCR-1367), and CD62L and CD44. Splenocytes from a naive B6 mouse were taken as control. Displayed cells in the second columns were gated on the stained V $\beta$  or total CD4 or CD8 T cells for naïve T cells. The results are representative of two experiments.



**Figure S5 Combined treatment with CD4 and CD8 T cells achieved longest survival.** Tumor-bearing mice were treated with TCR-3598\_2-transduced CD4 T cells and/or TCR-ESO-transduced CD8 T cells at day 30, when the tumors were palpable. TCR-1367-transduced CD4 and/or CD8 T cells were injected as controls (CD4-/CD8-irrelevant) where indicated. Displayed is percent survival of the indicated treatment groups with an endpoint of 500 mm<sup>3</sup> tumor volume. Survival was compared by Log-rank (Mantel-Cox) test. \**P*<0.05.

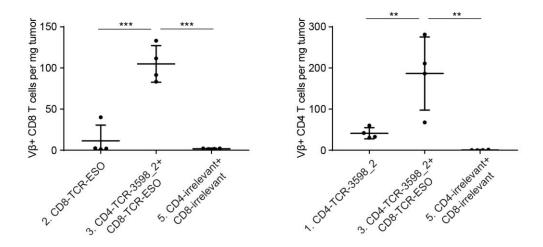
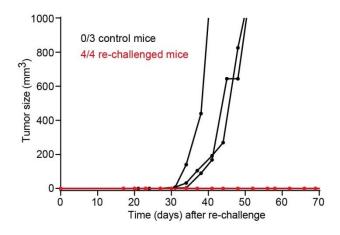




Figure S6 More T cells were found in tumors of mice that were treated with CD4 and CD8 T cells in combination. Tumor infiltrating lymphocytes were analyzed in tumor lysates prepared on day 5 following adoptive T cell therapy from indicated treatment groups. Group numbers refer to Figure 7. Cells were stained for CD3, CD4, CD8 and V $\beta$  of the transduced TCRs. Each dot represents data derived from one individual mouse. One-way ANOVA followed by Bonferroni post-hoc test was performed for statistical analysis. \*\**P*<0.01, \*\*\**P*<0.005.



**Figure S7 Mice previously treated with CD4 and CD8 T cells in combination rejected tumor cells upon re-challenge**. Mice that were treated with TCR-3598\_2-transduced CD4 T cells and TCR-ESO-transduced CD8 T cells (group 3 in Figure 7) were injected with tumor cells in the opposite flank on day 37 (3 mice) or day 190 (1 mouse) after adoptive T cell therapy. Control mice were not treated previously.

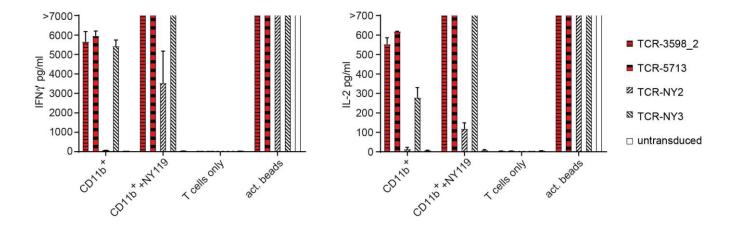



Figure S8 Tumoral macrophages were recognized by TCR-transduced CD4 T cells.  $CD11b^+$  cells were isolated from tumor material and co-cultured with TCR-transduced CD4 T cells. As positive controls,  $CD11b^+$  cells were loaded with NY-ESO-1<sub>119</sub> (NY119) or anti-CD3/CD28 activator beads were added to the T cells. Mean values of intra-assay duplicates with standard deviation are shown. The results are representative of three independent experiments.

# Table S1

| B-LCL       | A*       |        | В*       |      | C*     |      | DRB1*  |      | DRB3*  | DRB4*    | DRB5* | DQA1*  |        | DQB1*  |        | DPA1*  |        | DPB1*  |        |
|-------------|----------|--------|----------|------|--------|------|--------|------|--------|----------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| AMAI        | 6802     |        | 5301     |      | 0401   |      | 1503   |      |        |          | 0101  | 010201 |        | 0602   |        | 0301   |        | 0402   |        |
| AMALA       | 021701   |        | 15010101 |      | 0303   |      | 1402   |      | 0101   |          |       | 0501   |        | 0301   |        | 010301 |        | 0402   | 9401   |
| BSM         | 020101   |        | 15010101 |      | 030401 |      | 040101 |      |        | 01030101 |       | 03     |        | 030201 |        | 01     |        | 020102 |        |
| DJS         | 0201     | 0301   | 3501     | 3702 | 0401   | 0602 | 0101   | 1601 |        |          |       | 0101   | 0102   | 0501   | 0502   |        |        | 0401   | 0402   |
| DUCAF       | 3002     |        | 1801     |      | 0501   |      | 0301   |      | 0202   |          |       | 050101 |        | 0201   |        | 0103   |        | 0202   |        |
| HOR         | 330301   |        | 440301   |      | 1403   |      | 130201 |      | 030101 |          |       | 0102   |        | 0604   |        |        |        | 0401   |        |
| KAS011      | 010101   |        | 3701     |      | 0602   |      | 160101 |      |        |          | 0202  | 010202 | 010201 | 050201 |        | 020101 | 010301 | 1401   | 040101 |
| KAS116      | 24020101 |        | 5101     |      | 1203   |      | 0101   |      |        |          |       | 010101 |        | 050101 |        | 0201   |        | 1301   |        |
| KE          | 0201     | 2902   | 4403     | 4405 | 0202   | 1601 |        |      |        |          |       |        |        |        |        |        |        |        |        |
| MT14B       | 3101     |        | 4001     |      | 0304   |      | 0404   |      |        | 0101     |       | 03     |        | 0302   |        |        |        | 0402   |        |
| RML         | 0204     |        | 510101   |      | 1502   |      | 160201 |      |        |          | 0202  | 0501   |        | 0301   |        | 0103   |        | 0402   |        |
| SA          | 2E+07    |        | 070201   |      | 0702   |      | 0101   |      |        |          |       | 0101   |        | 050101 |        | Ì      |        | 0402   |        |
| SPO         | 0201     |        | 4402     |      | 0501   |      | 1101   |      | 0202   |          |       | 010202 |        | 0502   |        | 01     |        | 020102 |        |
| TISI        | 24020101 |        | 3508     |      | 0401   |      | 1103   |      | 0202   |          |       | 0505   |        | 0301   |        | 0103   |        | 0402   |        |
| WIN         | 0101     |        | 570101   |      | 0602   |      | 0701   |      |        | 0101     |       | 0201   |        | 0202   | 030302 | 0103   | 020102 | 0401   | 1301   |
| Blood donor | 020101   | 310101 | 440201   |      | 050101 |      | 040101 |      |        | 0103     |       | 0303   |        | 030101 |        | 0103   |        | 040101 |        |

HLA allotypes of the LCL panel and the blood donation used for TCR isolation.

## Table S2

Peptide sequences containing the TCR-3598\_2 recognition motif X-X-X-X-L-K-E-F-X-X-X-X-X-X-X.

| Protein                                                        | Peptide <sup>A</sup>               | IC50 (nM) |
|----------------------------------------------------------------|------------------------------------|-----------|
| Neuroserpin                                                    | EFSFLKEFSNMVTAK                    | 11,40     |
| Folliculin-interacting protein 2                               | CQRFLKEFTLLIEQI                    | 20,00     |
| Cytosol aminopeptidase                                         | AAAFLKEFVTHPKWA                    | 20,50     |
| Gamma-parvin                                                   | FFLHLKEFYLTPNSP                    | 33,50     |
| DNA mismatch repair protein Msh3                               | IIKYLKEFNLEKMLS                    | 39,50     |
| Protein Lines homolog                                          | RPLVLKEFDTAFSFD                    | 68,90     |
| Ankyrin and armadillo repeat-containing protein                | NPAFLKEFQMQQTLV                    | 73,7      |
| Piwi-like protein 3                                            | RHHTLKEFINTLQDN                    | 93,9      |
| Protein LAP2                                                   | QLSGLKEFWMDANRL                    | 95,8      |
| Apolipoprotein L1                                              | RNWFLKEFPRLKSEL                    | 101,1     |
| Formin-like protein 2                                          | HNTLLKEFILNNEGK                    | 105,4     |
| Apolipoprotein L2                                              | RQWFLKEFPRLKREL                    | 107,6     |
| Formin-like protein 1                                          | DCMVLKEFLRANSPT                    | 109,4     |
| Transcriptional-regulating factor 1                            | CSICLKEFKNLPALN                    | 120,2     |
| Separin                                                        | LLPALKEFLSNPPAG                    | 134,8     |
| Netrin-G2                                                      | SAKGLKEFFTLTDLR                    | 139,9     |
| Discoidin domain-containing receptor 2                         | EPDDLKEFLQIDLHT                    | 149,8     |
| Apolipoprotein L4                                              | REWFLKEFPQIRWKI                    | 151,3     |
| Protein Jumonji                                                | LYLSLKEFKNSQKRQ                    | 153,5     |
| Apolipoprotein L3                                              | REWFLKEFPQVKRKI                    | 154,1     |
| Tripartite motif-containing protein 59                         | IFYLLKEFVWKIVSH                    | 161,0     |
| Cell cycle checkpoint control protein RAD9A                    | ITFCLKEFRGLLSFA                    | 165,1     |
| Putative E3 ubiquitin-protein ligase UNKL                      | HYRYLKEFRTEQCPL                    | 180,2     |
| NACHT, LRR and PYD domains-containing protein 1                | KKEELKEFQLLLANK                    | 180,2     |
| Alpha-hemoglobin-stabilizing protein                           | ISAGLKEFSVLLNQQ                    | 194,3     |
| Peroxisome biogenesis factor 1                                 | TKDGLKEFSLSIVHS                    | 202,0     |
| Probable small intestine urate exporter                        | WNETLKEFKAMSGIL                    | 202,6     |
| X-ray radiation resistance-associated protein 1                | AKRLLKEFQARYRQL                    | 205,9     |
| Protein-arginine deiminase type-4                              | QLFKLKEFSKAEAFF                    | 210,4     |
| Vacuolar protein sorting-associated protein 13A                | ANAFLKEFCLKCPEY                    | 221,4     |
| Coiled-coil domain-containing protein 127                      | ARLLLKEFEAVLTER                    | 222,0     |
| Probable small intestine urate exporter                        | WNETLKEFKAMAPAY                    | 222,0     |
| Breast cancer type 1 susceptibility protein                    | NTSELKEFVNPSLPR                    | 231,8     |
| Fibrous sheath-interacting protein 2                           |                                    | 231,8     |
|                                                                | INSLLKEFSDAQIKV<br>FYSKLKEFSILLQKA | ·         |
| Dystonin                                                       |                                    | 241,1     |
| Ropporin-1B                                                    |                                    | 261,5     |
| Nucleotide exchange factor SIL1                                | SHQNLKEFALTNPEK                    | 286,9     |
| Sodium channel modifier 1                                      | RQMALKEFSSVYSEE                    | 298,7     |
| Poly(A) RNA polymerase, mitochondrial                          | LNTLLKEFQLTEENT                    | 318,9     |
| Phosducin-like protein                                         | GKMTLKEFAIMNEDQ                    | 330,5     |
| Ropporin-1A                                                    | LPKMLKEFAKAAIRV                    | 387,3     |
| Collagen alpha-3(VI) chain                                     | GFPLLKEFVQRVVES                    | 390,3     |
| Gem-associated protein 4                                       | PDEVLKEFVLPFLRL                    | 392,0     |
| Olfactory receptor 10X1                                        | NQTILKEFILVGFSV                    | 455,3     |
| Spectrin alpha chain, erythrocytic 1                           | SEETLKEFSTIYKHF                    | 459,0     |
| Protein NYNRIN                                                 | FKRALKEFIFLHGKK                    | 459,7     |
| UPF0565 protein C2orf69                                        | YPEVLKEFAQTGIIV                    | 463,6     |
| Leucine-rich repeats and immunoglobulin-like domains protein 3 | LPEHLKEFQSLETLD                    | 487,7     |
| Epididymal-specific lipocalin-10                               | SFQSLKEFMDACDIL                    | 492,4     |
| Required for meiotic nuclear division protein 1 homolog        | MLKPLKEFENTTCST                    | 497,0     |

<sup>A</sup> Peptides were included if they had a predicted affinity to HLA-DR4 of below 500 nM and are present in the human but not the mouse proteome.