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Human endogenous retroviruses (hERVs) are remnants of exogenous retroviruses that have integrated into the genome
throughout evolution. We developed a computational workflow, hervQuant, which identified more than 3,000
transcriptionally active hERVs within The Cancer Genome Atlas (TCGA) pan-cancer RNA-Seq database. hERV
expression was associated with clinical prognosis in several tumor types, most significantly clear cell renal cell carcinoma
(ccRCC). We explored two mechanisms by which hERV expression may influence the tumor immune microenvironment in
ccRCC: (i) RIG-I–like signaling and (ii) retroviral antigen activation of adaptive immunity. We demonstrated the ability of
hERV signatures associated with these immune mechanisms to predict patient survival in ccRCC, independent of clinical
staging and molecular subtyping. We identified potential tumor-specific hERV epitopes with evidence of translational
activity through the use of a ccRCC ribosome profiling (Ribo-Seq) dataset, validated their ability to bind HLA in vitro, and
identified the presence of MHC tetramer–positive T cells against predicted epitopes. hERV sequences identified through
this screening approach were significantly more highly expressed in ccRCC tumors responsive to treatment with
programmed death receptor 1 (PD-1) inhibition. hervQuant provides insights into the role of hERVs within the tumor
immune microenvironment, as well as evidence that hERV expression could serve as a biomarker for patient prognosis
and response to immunotherapy.
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Introduction
Human endogenous retroviruses (hERVs) are remnants of exoge-
nous retroviruses integrated into the primate genome over evolu-
tionary time (1). hERVs share genomic similarities to other retro-
viruses, including the presence of functional and remnant 5′ and 
3′ long terminal repeats (LTRs), and gag, pro, pol, and env genes.  
Subsets of recently integrated hERVs still maintain limited transla-
tion under physiological and pathological conditions (2–6), includ-
ing evidence for modulation of melanoma, lymphomas, leukemias, 
and ovarian, breast, prostate, urothelial, and renal carcinomas (5, 7–
14). Although studies have identified the role of specific hERVs in the 
pathogenesis and progression of these cancers, to date there have 
been a limited number of pan-cancer studies elucidating the land-
scape and impact of hERV expression. A recent study by Rooney et 
al. analyzed features associated with genes important for immune 
cytolytic activity, finding that one of these associated features was 

expression of a small subset of hERVs (15). While this study provided  
evidence that hERV expression associated with an immune phe-
notype, the exploration of hERVs was limited by a small reference 
set, no reported mechanism of association or prognostic impact of 
hERV expression, and no confirmation of a hERV-specific immune 
population within any tumor type. Thus, the role of hERVs in mod-
ulating the tumor immune microenvironment remains largely  
unexplored, predominately due to a lack of tools for identification 
of full-length, intact hERVs from sequencing data. To fully under-
stand the role of hERVs in antitumor immunity, a more comprehen-
sive database containing greater numbers of individual full-length 
hERVs is required. Understanding patterns of hERV expression 
will allow for greater knowledge of the impact of hERVs on tumor- 
immune interactions, the design of new prognostic models based 
on hERV signatures, and further identification of tumor-specific 
hERV epitopes for targeted tumor vaccinations.

Currently, a limited repertoire of tools are available for hERV 
quantification. There exist several databases of hERV elements, 
including HERVd, which contains hERV-like elements, and their 
genomic locations that have been used for analysis of RNA-Seq 
data (16–18). Additionally, there are several tools for identification 
of intra- and intergenic hERV-like elements (19), related trans-
posable elements (20), and interspersed repeats (RepeatMasker)  
among human transcripts (21). While these resources provide  
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Euclidean distance of mean hERV expression between each can-
cer type (Figure 1B and Supplemental Figure 5). Tumor types with 
lowest overall hERV expression (LIHC, ACC, UVM) were closely 
related by unsupervised clustering and shared very low similarity 
with all other tumor types. Two large clusters comprised 10 (PCPG, 
SKCM, CHOL, SARC, THYM, DLBC, PRAD, THCA, KICH, and 
LGG) and 8 (LUAD, PAAD, BLCA, CESC, MESO, UCEC, UCS, 
and BRCA) cancer types. While several cancer types demonstrated  
similar hERV expression patterns based on tissue location (UCEC 
and UCS, HNSC and LUSC, KIRC and KIRP, and READ and COAD), 
the clustering observed between various tumor types suggests that 
hERV expression may be conserved among cancers across a vari-
ety of tissues. Notably, two tumor types with immune-privileged  
tissues of origin (TGCT and UVM) demonstrated lower similari-
ties to all other cancers. Lack of immune interactions within these 
native tissues may potentially result in unique hERV expression 
profiles in these tumors, suggesting that shared hERV expression 
profiles within other tumor types may be shaped by the presence of 
related tumor immune responses.

Overexpression of specific hERVs within tumors has been 
attributed to epigenetic demethylation of genes associated with 
provirus expression, which can be triggered through the use of 
epigenetic modulatory agents (14, 23–27). hERV expression was 
highly associated with Illumina Methylation450K-derived meth-
ylation patterns, with the majority of hERVs significantly asso-
ciated with demethylation (2,639 hERVs with generalized linear 
model [GLM] FDR-corrected P ≤ 0.05; 2,205 with coefficient <0; 
434 with coefficient >0; Figure 1C).

We next examined the association between hERV expression 
and immune features, age, and survival among tumor types. We 
first performed multivariable linear regression of hERV expression 
by cancer type with 46 immune gene signatures (IGS) previously 
described in the literature (28–33) (Figure 1D and Supplemental 
Figure 6). A small population of hERVs demonstrated near ubiqui-
tous positive or negative association with all IGS, with the major-
ity of hERVs showing a split association pattern. Included among  
IGS that demonstrated positive association with the majority 
of significant hERVs (GLM FDR-corrected P < 0.05) were those 
associated with immune cells known to have antitumor effector 
function, including effector and central memory T cells and NK 
cells. Additionally, a signature of anti–PD-1 (aPD1) responsive-
ness (IPRES_aPD1_responder) was positively associated with 
hERV expression in 79.2% (1,472 of 1,858) of significantly asso-
ciated hERVs, while a signature for nonresponder tumor biopsies 
(IPRES_aPD1_nonresponder) was negatively associated with all 
hERV expression in 83.0% (1,679 of 2,024) of significantly asso-
ciated hERVs (34). We next examined the association between  
hERV expression and age, controlling for tumor type, and observed 
that the majority of significantly associated hERVs demonstrated 
negative association between expression and patient age (GLM 
FDR-corrected P < 0.05; 150 with coefficient <0; 13 with coef-
ficient >0; Supplemental Figure 7). To elucidate whether hERV 
expression associated with clinical outcome, we performed Cox’s 
proportional hazard regression (CoxPH) for hERV expression 
across all cancer types. Association of survival with mean hERV 
expression identified 3 tumor types with prognostic mean hERV 
expression (KICH, COAD, and KIRC). In all 3 tumor types, mean 

methods to quantify expression of hERV-like elements among 
transcripts, they do not provide quantification based on an 
intact, full-length hERV proviral reference. This capability to 
distinguish and quantify individual hERVs provides a useful tool 
to class ify hERVs into distinct groups based on biological associ-
ations in various cancers.

Recently, Vargiu et al. compiled a database of 3,173 intact, full-
length hERV sequences and developed a comprehensive method 
for classifying these sequences into 11 superfamilies (Supplemen-
tal Table 1; supplemental material available online with this article; 
https://doi.org/10.1172/JCI121476DS1) (3). Using this database as 
a reference, we designed a computational workflow for identifying 
the expression of specific hERVs from RNA sequencing (RNA-Seq), 
hervQuant, and quantified hERV expression within the Cancer 
Genome Atlas (TCGA) pan-cancer dataset. We assessed interac-
tions of specific hERVs with immune and clinical features. Among  
all cancer types encompassed within the pan-cancer dataset, clear 
cell renal cell carcinoma (ccRCC, designated by TCGA as KIRC) 
contained the greatest number of prognostic hERVs. Thus, we 
explored two mechanisms by which hERV expression may influ-
ence the tumor immune microenvironment in ccRCC: (i) activation 
of RIG-I–like pathway signaling and (ii) hERV epitope-triggered T 
and B cell activation. Using biological classes of hERV signatures 
derived from these two mechanisms, we further demonstrated the 
ability of hERV expression to predict patient survival in a multivar-
iate regression model, independent of traditional clinical staging 
and molecular subtyping. Last, we used a publicly available ccRCC 
ribosome profiling (Ribo-Seq) dataset (22) to screen for translation 
of tumor-specific hERV epitopes, validated their capacity to bind 
HLA in vitro, and demonstrated the presence of tetramer-positive 
epitope-specific T cells within ccRCC tumors. We found tumor- 
specific hERV expression to be associated with clinical response  
to PD-1 axis inhibition in ccRCC patients, suggesting that hERV 
expression may provide a biomarker for immunotherapy respon-
siveness and hERV viral proteins may provide targetable, tumor- 
specific epitopes. The information gained from hERV expression 
profiling gives new insight into the role of hERVs within tumor- 
immune microenvironment interactions and provides evidence  
for hERV expression–based molecular models for patient prognosis 
and responsiveness to immunotherapy.

Results
Expression and association of hERVs in TCGA pan-cancer. TCGA 
pan-cancer hERV expression was determined using hervQuant, 
described in detail in the Supplemental Notes (Figure 1A and Sup-
plemental Figures 1 and 2). For consistency, only samples sequenced 
by Illumina NextSeq at 2 × 50 bp were analyzed, resulting in com-
plete removal of ESCA, GBM, OV, and STAD and partial removal of 
COAD, UCEC, and READ subtypes (see Supplemental Table 2 for 
tumor abbreviations). All 3,173 reference hERVs were expressed in 
at least one sample, encompassing all 11 superfamilies and 3 line-
ages (Supplemental Table 1). Relative hERV expression patterns 
were strikingly homogenous across all cancer types (Figure 1B and 
Supplemental Figure 3). Among all cancer types, TGCT demonstr-
ated the greatest mean and median hERV expression, while LIHC, 
ACC, and UVM ranked last (Supplemental Figure 4). To identify 
similar hERV expression patterns across models, we calculated the 
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negative association to key agonistic genes in NF-κB signaling (e.g. 
TBK1, TANK, and AZI2). CoxPH of hERV expression within TCGA 
KIRC provided further evidence that these groups are biologically 
distinct, with the majority of group 1 and 2 hERVs providing asso-
ciation with longer and shorter overall survival, respectively (Fig-
ure 2C). In addition, group 2 and non-prognostic group 1 hERVs 
(CoxPH Bonferroni-corrected P > 0.05) demonstrated a signifi-
cant positive association with the majority of IGS (93%, 57%, and 
60%, respectively), while prognostic group 1 hERVs (Bonferroni- 
corrected P ≤ 0.05; majority associated with longer overall  
survival) largely demonstrated a negative association with IGS 
(33%), including those for T cells, B cells, dendritic cells, macro-
phages, and NK cells (Figure 2D and Supplemental Figure 11). 
Despite these negative association patterns with IGS observed 
in prognostic group 1 hERVs, TCGA KIRC samples with greater 
expression of these hERVs had decreased ratios of Treg to CD8+ 
IGS (Treg IGS divided by the mean of 3 CD8+ IGS) compared with 
any other hERV group, suggesting the immune infiltrate associated 
with prognostic group 1 hERVs was less immunosuppressive than 
that of non-prognostic group 1 and group 2 hERVs (Supplemental 
Figure 12). Additionally, prognostic group 1 hERVs demonstrated 
positive association with signatures for Th17 T cells, which have 
been associated with a more favorable prognosis in ccRCC (39). 
Overall, this analysis provided the first evidence to our knowledge 
for biologically distinct hERV groups that differentially interact 
with innate immune sensing, with differential downstream prog-
nostic and immunological effects and prognostic associations.

hERV expression in ccRCC demonstrates evidence of B cell acti-
vation. In addition to innate immune sensor signaling, hERVs can 
trigger antitumor immunity through tumor-specific expression of 
viral epitopes. In cancer patients, high antibody titers have been 
known to develop against hERV proteins with specificity of expres-
sion within the tumor, with little else known regarding the role 
of this B cell response (40). To determine whether hERVs show  
evidence of an adaptive immune response in ccRCC, we identi-
fied T/B cell clonotype repertoires in TCGA KIRC using MiXCR 
and filtered on T/B cell receptors (TCRs/BCRs; defined as shared 
CDR3 amino acid sequence) observed in ≥10% of patients (41). 
These filtering criteria resulted in no shared TCR clonotypes, sug-
gesting potentially low sensitivity of detection for MiXCR-derived 
TCR data in RNA-Seq data. In contrast, 437 shared BCRs were 
identified, of which 397 were significantly associated with expres-
sion of ≥1 hERV (Figure 3A, left). Within this pool, 4 clones had sig-
nificant positive association with the expression of 1,207 hERVs, 
suggesting a potential hERV epitope–driven B cell response (Fig-
ure 3A, right, and Supplemental Table 3). Differential superfam-
ily distribution patterns were observed between BCR-associated 
and non-BCR-associated hERVs, suggesting certain superfami-
lies may have a greater propensity for triggering B cell activation 
(HERVERI, HML, HSERVIII, and HERVW9; FDR-corrected χ2 
test P ≤ 0.05; Supplemental Figure 13). Furthermore, multiple 
sequence alignment (Clustal Omega) of proviral sequences from 
these BCR-associated hERVs identified large regions of high 
sequence identity (Supplemental Figure 14). Filtering on sequence 
identity of ≥25% of all BCR-associated hERVs with a sequence 
length ≥21 base pairs (the approximate minimal length necessary 
for immunoglobulin CDR3 region specificity) (42), we observed 8 

hERV expression was negatively prognostic (Supplemental Fig-
ure 8). Additionally, we examined Kaplan-Meier survival curves 
for each TCGA cancer type split by upper versus lower 50th per-
centile mean hERV expression, and observed 5 cancer types with 
significant separation of survival curves (Supplemental Figure 
9; BLCA, COAD, KICH, KIRC, and PCPG; log-ranked P < 0.05). 
Among these 5 cancer types, KIRC was the most associated with 
survival. All cancer types except BLCA demonstrated shorter sur-
vival in patients with greater mean hERV expression. To perform 
a more detailed analysis, we associated survival with expression 
of each individual hERV (Figure 1E and Supplemental Figure 10). 
TCGA KIRC (ccRCC), a tumor type in which several hERVs have 
been shown to be actively translated (14, 35–37), constituted 25.1% 
of all significantly prognostic hERVs, with over 1.5× more signifi-
cant hERVs than the next highest cancer, LGG (KIRC: 362; LGG: 
230; Figure 1E). To elucidate the immune mechanisms behind 
this enrichment of prognostic hERVs in ccRCC, we focused on this 
cancer type for the remainder of our analyses.

hERV expression in ccRCC demonstrates evidence of immune stim-
ulation through RIG-I–like signaling. Several groups have demon-
strated that activation of select endogenous retroviral elements 
can trigger signaling through innate immune sensors, including 
double-stranded RNAs (dsRNA) that subsequently signal through 
cytosolic RIG-I–like receptors (26, 27). To elucidate a more com-
prehensive role for hERVs in the RIG-I–like pathway in ccRCC, we 
studied the association between hERV expression and genes in 
the RIG-I–like receptor signature (Molecular Signatures Database) 
(38), observing marked separation of genes into 2 groups by hier-
archical clustering (Figure 2A). We defined 2 hERV groups (1 and 
2; Supplemental Table 3) based on the ratio between each hERV’s 
mean linear regression coefficients within each gene cluster (>1 or 
< 1) and validated their definitions using principal component anal-
ysis (Figure 2B). While both groups demonstrated significant posi-
tive association between hERV expression and genes that activate 
the RIG-I-like pathway, group 2 hERVs demonstrated a significant 
positive association with several key antagonist genes downstream 
of NF-κB signaling (most notably NFKBIB), along with a significant 

Figure 1. Human endogenous retrovirus expression and association in 
TCGA pan-cancer dataset. (A) Schematic of the hervQuant workflow. (B) 
hERV expression displayed by heatmaps in the outermost layer, ranked by 
mean expression across the pan-cancer dataset. Tumor groups shown in the 
middle ring, with colors representing clusters determined from a cut-tree 
(height = 140) of hierarchical clustering of Euclidean distance of mean hERV 
expression between each cancer type. Innermost lines represent hERV 
expression pairwise Euclidean distance ≤40 between tumor types. Opacity 
and width of inner lines increase with greater similarity. (C) Volcano  
plot of association (GLM) between read-normalized hERV expression and 
the mean of the methylation β coefficient, with GLM coefficient along 
the x axis and –log10 FDR-corrected P value along the y axis. (D and E) 
Association (GLM) between read-normalized hERV expression and (D) IGS 
expression and (E) survival among TCGA pan-cancer dataset. FDR- (D) or 
Bonferroni-corrected (E) P represented by intensity of color and direction 
of coefficient represented by color (red, positive; blue, negative). Color bar 
displays hERV superfamily and canonical clade classifications. (D) Rows 
and columns are ordered by number of significantly positive associations. 
(E) Survival analysis filtered by hERVs and tumor types with at least 1 
significant comparison. See Supplemental Table 2 for number of samples 
per TCGA cancer cohort.
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regions of conserved DNA similarity (Figure 3B). NIH Retrovirus 
Protein BLAST (https://www.ncbi.nlm.nih.gov/genome/viruses/ 
retroviruses/) of these sequences showed similarity to known 
hERV env genes in 8 of 8 sequences, with additional similarity 
to other retroviral genes in 2 of 8 sequences. While suggestive of 
potentially targetable antigens within the hERV env region, CoxPH 
demonstrated significantly higher hazard ratios among BCR- 
associated compared with non-BCR-associated hERVs (Welch’s 
t test P = 2.4 × 10–3; Figure 3C). Differential expression analysis 
(DESeq2) of BCR-associated hERVs demonstrated a balanced 
proportion of hERVs with both higher tumor–to–matched normal  
and matched normal–to–tumor expression (tumor: n = 542; 
matched: n = 72; Figure 3D), suggesting an overall lack of tumor 
specificity among BCR-associated hERVs.

hERV signatures of innate and adaptive immune activation 
provides prognostic value in ccRCC. Currently, clinical stage is the 
most robust prognostic variable for ccRCC. While molecular fea-
tures such as M1–M4 molecular subtyping have been shown to be 
potentially prognostic, no molecular markers have been widely 
adapted for clinical decision making in ccRCC, making identifi-
cation of a robust molecular marker for prognosis an appealing 
goal (43). Throughout this study, we identified pools of hERVs 
with evidence of both RIG-I–like–mediated innate immune acti-
vation and inhibition, as well as B cell–mediated adaptive immu-
nity (Figure 4, A and B). To provide evidence that these classes 
can be used to generate a model of clinical outcome in ccRCC, we 
derived signatures corresponding to the mean expression of prog-
nostic hERVs (CoxPH Bonferroni-corrected P ≤ 0.05) within each 
class. According to log-rank test, Kaplan-Meier overall survival 
curves for patients within the upper versus lower 50th percentiles 
for each of the 3 signatures were significantly different (RIG-I–
like upregulated [up]: P = 4.5 × 10–10; RIG-I–like downregulated 
[down]: P = 6.3 × 10–14; BCR-associated: P = 1.1 × 10–5; Figure 4C). 
Patients with both higher expression of RIG-I–like down and BCR- 
associated signatures had significantly shorter overall survival, 
while those with higher expression of the RIG-I–like up signature 
had longer overall survival. Recent analyses also provided metrics 
for disease-specific survival (DSS) and progression-free interval 
(PFI) in TCGA KIRC, additionally with an underpowered report-

ing of disease-free interval (DFI) (44). Of these metrics, DSS and 
PFI trended similarly to curves observed with overall survival, pro-
viding further evidence that these hERV signatures are specific-
ally associated with disease burden (Supplemental Figure 15). We 
performed multivariable CoxPH modeling with clinical stage and 
with or without molecular subtype (M1–M4) and hERV signatures 
as predictors for patient outcome in TCGA KIRC. Comparing 
a full model against an all-but-one-feature model, all 3 signa-
tures provided significant prognostic value in addition to stage 
and molecular subtype, with the RIG-I–like down signature con-
tributing nearly as much prognostic power as traditional staging 
and each of the 3 signatures providing greater prognostic power 
than molecular subtyping (Figure 4D and Supplemental Table 4). 
To establish whether these hERV signatures were prognostic in  
other tumors, we performed univariable CoxPH for each signature  
within all TCGA cancer types (Figure 4E). Among these 3 sig-
natures, BCR-associated hERVs were additionally prognostic in 
COAD and LGG, while RIG-I–like down hERVs were additionally  
prognostic in BLCA, COAD, KIRP, LGG, and LIHC, suggesting 
these additional cancer types may have hERV–immune micro-
environment interactions similar to those in ccRCC. Included 
among these cancer types were KIRP and COAD, both of which 
were closely related to KIRC by hierarchical clustering of hERV 
expression patterns (Supplemental Figure 5), and LGG, which 
contained the second greatest number of prognostic hERVs after 
KIRC (Figure 1E).

hERVs demonstrate evidence of tumor-specific presentation of 
targetable viral epitopes. Previous studies have identified select 
tumor-specific hERV epitopes in ccRCC that trigger in vitro anti-
tumor responses with limited in vivo efficacy (35–37). Studies 
regarding neoantigens have suggested that a large number of 
potential epitopes are required for screening in order to identify  
a few clinically relevant peptides with significant in vivo anti-
tumor efficacy (45–48). We examined hERV expression patterns 
between tumors and matched normal tissue within TCGA KIRC 
and observed that normal samples clustered together (Supplemen-
tal Figure 16). The majority of hERVs were heavily upregulated 
in tumor compared with matched normal samples, leading us to 
hypothesize that there may be many more differentially expressed 
and targetable hERVs within tumor than previously described. In 
an attempt to expand the potentially targetable hERV epitope pool 
in ccRCC, we first ranked hERVs based on fold change in expres-
sion between tumor and matched normal samples (Supplemental 
Figure 17) (49). Notably, CT-RCC hERV-E (HERVERI/gamma-
retrovirus-like, desig nated as hERV 2256 in the reference data-
base, also known as ERVE-4), one of the few hERVs demonstrated 
to be capable of eliciting a vaccine-inducible CD8+ T cell response, 
ranked second highest in tumor versus normal fold change in 
expression (35–37). This same hERV was previously described by 
Rooney et al. (ERVE-4) and was found to be significantly upregu-
lated in ccRCC and associated with a signature of cytotoxicity (15). 
To ensure that our analyses were consistent with these previous-
ly published findings, we performed linear regression between 
CT-RCC hERV-E and IGS expression including the Rooney signa-
ture for cytotoxicity (CYT), and observed a significant association 
between expression of this hERV and the majority of IGS in our set, 
including CYT (Supplemental Figure 18).

Figure 2. Mechanism of hERV-mediated RIG-I–like pathway signaling in 
ccRCC. (A) Heatmap of association (GLM) between hERV expression and 
RIG-I–like pathway–associated genes. FDR-corrected –log10(P value) rep-
resented by intensity of color, and direction of coefficient represented by 
color (red: positive, blue: negative). Group 1 (blue) and 2 (orange) hERVs are 
represented by color along the left-side color bar. (B) PC1 versus PC2 from 
PCA of association matrix in A between hERV expression and RIG-I–like 
pathway–associated genes from for group 1 and 2 hERVs. Percentage of 
variance for principal component 1 (PC1) and PC2 is shown in parentheses 
along each axis. (C) Volcano plot of CoxPH analysis of UQN hERV expres-
sion as a predictor of survival, with Bonferroni-corrected –log10(P value) 
displayed as a function of hazard ratio for each hERV. Dashed horizontal 
line represents FDR-corrected P = 0.05. (B and C) Groups 1 and 2, and other 
hERVs defined from A (group 1: blue; group 2: orange; neither: gray). (D) 
Heatmap of association (GLM) between expression of IGSs with group 1 
and 2 hERV signatures (average expression), split by either significant or 
nonsignificant association with patient prognosis. FDR-corrected P values 
represented by intensity of color, and direction of coefficient represented 
by color (red, positive; blue, negative).
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provided evidence for translation of CT-RCC hERV-E in several 
human lymphoblastic cell lines but minimal translation in all other  
sets, including normal human tissues, suggesting that CT-RCC 
hERV-E had the capacity for translation within tumor-like tissues 
(Supplemental Figure 20). hERV 4700 (HERVERI/gammaretro-
virus-like), which demonstrated the highest tumor versus normal 
expression by RNA-Seq, was identified as the most differentially 
expressed hERV with greatest evidence of translation. Addition-
ally, hERV 4700 was expressed at low levels in matched normal  
tissues from all other tumor subtypes (Supplemental Figure 21) and 
demonstrated additional evidence of translation among GWIPS 
tumor cell line samples (Supplemental Figure 22). Although Ribo-
Seq coverage of hERV 4700 within ccRCC samples was relatively 
low, coverage patterns were similar to those observed by RNA-
Seq (Figure 5B). Areas of coverage within the hERV 4700 provi-
ral reference corresponded to viral gag (red), pol (blue), and env 
(green) genes. Protein-BLAST of these regions translated across 
each reading frame provided high sequence similarity with known 
reference hERV sequences across all 3 frames of pol and env, and 
frame 2 of gag (Figure 5C and Supplemental Figure 23). Using the 
longest sequence identified within each protein reading frame, 
we performed NetMHCPan4.0 epitope prediction, identifying 
30 predicted HLA-A*02:01 binders (binding affinity ≤500 nM; 
Supplemental Table 5) (52). To ensure these predicted epitopes 
were hERV specific, we searched for overlap between amino acid 
sequences of each peptide with known human proteins in the 
GENCODE hg19 protein-coding transcript translated sequences, 
observing no overlap between epitopes and non-hERV proteins. 
Using an HLA-A*02:01 monomer UV exchange assay and HLA 
ELISA readout (53–58), we validated the binding of 30 of 30 pre-
dicted epitopes to HLA-A*02:01 with exchange efficiencies rang-
ing from 16.1% to 73.1% (Figure 5D).

hERV epitopes associate with aPD1 response with evidence of  
epitope-specific T cells in ccRCC. To explore whether hERV 4700 
expression is predictive for patient response to aPD1 therapy, we 
performed quantitative real-time PCR (RT-qPCR) quantification 
of hERV 4700 with 2 of each gag-, pol-, and env-specific primer/
probe sets on ccRCC tumor biopsy RNA in aPD1-treated patients 
(responders: n = 7, nonresponders: n = 6; Figure 5E and Supplemental  
Tables 6–8). We observed greater mean RT-qPCR signal in aPD1 
responders in all primer/probe sets (Mann-Whitney U test P < 0.05; 
Supplemental Table 9), as well as hervQuant-derived hERV 4700 
expression from the same set with added samples (responders: n = 
10, nonresponders: n = 10; Mann-Whitney U test P = 0.0455), sug-
gesting that transcription of hERV 4700 is associated with greater  
responsiveness to immunotherapy. Additionally, multivariable lin-
ear regression (GLM) provided perfect fit of primer/probe sets as a  
predictor for response. To demonstrate the presence of an anti–hERV 
4700 T cell immune response in ccRCC, we performed tetramer 
staining of an HLA-A*02:01 ccRCC tumor sample using the 30 MHC 
tetramers described above (Figure 6, A and B). Using a stepwise 
approach, we first screened the tumor using 5 pools of 6 tetramers, 
which demonstrated that pool 4 had the largest tetramer-positive 
CD8+ T cell population (11.3% tetramer-positive). Running the 6  
individual tetramers, we observed tetramers 2 and 3 to have the  
greatest staining, which corresponded to peptides derived from frame 
2 of the gag (10.9% positive) and pol (13.5%) protein regions, respec-

Similar to the pattern observed in CT-RCC hERV-E, hERVs 
that were overexpressed within tumors were ubiquitously pos-
itively associated with IGS, while those that demonstrated over-
expression within matched normal tissue demonstrated a mixed 
association pattern (FDR-corrected P ≤ 0.05; Figure 5A), suggest-
ing that preferential hERV expression in the tumor may facilitate 
immune activation. Interestingly, none of the top 10 hERVs by 
tumor versus normal expression were significantly associated 
with TCR/BCR clonotype expression or with survival. Given that 
(i) these hERVs were significantly associated with immune acti-
vation and (ii) there is evidence of functional epitopes and pub-
lic hERV-specific T cells in at least one of these hERVs (CT-RCC 
hERV-E), the inability to computationally detect TCRs/BCRs 
significantly associated with these hERVs suggests we lacked the 
sensitivity necessary to identify these hERV-specific TCR/BCR 
clones. This lack of detectable public adaptive immune response 
is also characteristic of neoantigens, which despite failing to show 
association with TCR/BCR expression and survival in the absence 
of immunotherapy in ccRCC, have been recently demonstrated to 
provide vaccine-induced efficacy in melanoma (46, 50).

Tumor-specific transcription is necessary for epitope genera-
tion but is not sufficient without downstream translation. Since the 
majority of hERVs are translationally inactive, we ran hervQuant 
on a publicly available Ribo-Seq dataset comprising several regions 
from 2 ccRCC and matched normal kidney nephrectomy samples 
(4 regions per tumor; 2 regions per matched normal) (22). To filter 
for hERVs with the strongest evidence of differential expression 
by both Ribo-Seq and RNA-Seq, we ranked hERVs by the sum of 
RNA-Seq and Ribo-Seq fold change in expression in tumor ver-
sus normal samples (Supplemental Figure 19). Despite evidence 
of translation in the literature, CT-RCC hERV-E did not demon-
strate coverage by Ribo-Seq in this ccRCC dataset, suggesting 
the relative insensitivity of Ribo-Seq– compared with RNA-Seq–
based hERV identification. However, analysis of the GWIPS data-
base (51) containing aggregate data from >30 Ribo-Seq datasets 

Figure 3. hERVs associated with expression of BCR clonotypes are neg-
atively prognostic in ccRCC. (A) Heatmap of association (GLM) between 
hERV expression and expression of B cell clonotypes, displaying all TCRs 
and BCRs that demonstrate association (left, FDR-corrected P ≤ 0.05) 
and a magnified view of the top 4 B cell clones with highest numbers of 
significantly associated hERVs (right, underscored by black box to the 
bottom left). FDR-corrected P values represented by intensity of color 
and direction of coefficient represented by color (red: positive, blue: 
negative). (B) Multiple sequence alignment of areas of DNA identity in 
≥25% of hERVs (all hERVs significantly associated with the top 4 B cell 
clones) and ≥24 base pairs in length (minimum BCR epitope length). Base 
pair sequences displayed by color (A: blue; T: red; C: green; G: yellow; gap: 
gray) and sequence below. y axis order is conserved in all plots. (A and B) 
Color bars at left show superfamily and canonical clade classification. (C) 
Hazard ratios among all hERVs significantly associated to the top 4 B cell 
clones (left) or non-BCR-associated hERVs (right) within TCGA KIRC, with 
Welch’s t test P value displayed. Data represent median (middle line), with 
boxes encompassing the 25th to 75th percentile, whiskers encompassing 
1.5× the interquartile range from the box, and outliers shown by dots. 
(D) Waterfall plot displaying the log2 fold change in mean expression of 
hERVs associated with the top 4 B cell clones in the tumor compared with 
matched normal tissue. FDR-adjusted P value significance (P ≤ 0.05) from 
DESeq2 analysis displayed in red (positive fold difference), blue (negative 
fold difference), and gray (nonsignificant).
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from different publications (CD8_T_Cell, CD8_Cluster, CD8) (30, 
32, 33), with CD8_T_Cell showing an association pattern different 
from the other 2 signatures. The CD8_T_Cell signature contained 
a set of 8 genes that accounted for its variation from the other 2 
signatures —HAUS3 (cytokinesis and mitosis), SF1 (pre-mRNA 
splicing), SFRS7 (pre-mRNA splicing), ZNF91 (protein coding), 
ZNF609 (protein coding), THUMPD1 (gene expression/rRNA  
processing), MYST3 (histone acetyltransferase), and CDKN2A 
(cell cycle regulator) — all of which are nonspecific to CD8+ T cells 
in function (Supplemental Figure 25). Nevertheless, we included 
the CD8_T_Cell signature within all analyses (including Treg- 
to-CD8+ ratio) because it remains a commonly used signature for 
CD8+ T cells within the literature.

In contrast to IGS, CoxPH analysis with UQN hERV data 
contained a greater number of positively prognostic hERVs com-
pared with read-normalized data, suggesting that the proportional 
expression of hERVs may also influence overall survival. We addi-
tionally observed that the majority of hERVs were associated with 
younger patient age. Since most tumor types show an association 
between older age and worse outcome, and the majority of sig-
nificantly prognostic hERVs were associated with worse outcome, 
these results suggest that the association between hERVs and 
patient outcome was not simply due to an association with age.

Due to the diverse tumor-immune interactions observed among 
different cancer types, we narrowed down further the role of hERVs 
upon the tumor immune microenvironment to one cancer type. 
We focused on ccRCC to further study the role of hERVs in shap-
ing the tumor immune microenvironment because (i) it contained 
the greatest number of prognostic hERVs and (ii) hERV proteins are 
known to be expressed and immunogenic in ccRCC (14, 35–37).

Within ccRCC, we considered the potential for hERVs to 
impact both arms of the immune system. The role of hERVs in 
triggering an innate immune response is underscored by several 
recent reports noting that epigenetic-modifying agents that pro-
mote greater DNA demethylation — decitabine (methyltransferase 
inhibitor) and abemaciclib (CDK4/6 inhibitor) (26, 27) — increased 
expression of retroviral elements and triggered subsequent antitu-
mor responses through innate sensor signaling, including induc-
tion of RIG-I–like pathway detection of viral dsRNAs. While these 
previous reports demonstrated only the proinflammatory nature 
of selected hERV elements, we were surprised to find two strik-
ingly distinct patterns of association between hERV expression 
in ccRCC and expression of genes associated with the RIG-I–like 
family. The implication of this clustering pattern (along with the 
significantly different patterns of association between these hERV 
groups with survival and IGS expression) is that hERVs may play 
both agonistic and antagonistic roles in innate sensor immunity. 
Potentially, group 2 hERVs (RIG-I–like down) may interfere with 
RIG-I–like signaling through a currently unknown mechanism, 
ultimately skewing the tumor immune microenvironment in favor 
of an immunosuppressive phenotype with greater Treg–to–CD8+ 
T cell ratios and negatively impacting patient prognosis.

Next, we studied the role of hERVs in triggering an adap-
tive immune response through hERV-mediated immune activa-
tion of retroviral epitope-driven T and B cell responses. MiXCR 
analysis of TCGA KIRC failed to identify TCR clones that were 
shared across at least 10% of samples, suggesting that while hERV 

tively. We validated the presence of these T cell populations in 3 
additional ccRCC tumors (gag: 10.9%–24.8%; pol: 13.5%–22.3%), 
as well as observing staining within the range of negative control 
tetramers in 4 healthy donor peripheral blood mononuclear cells 
(PBMC) samples (gag: 0.12%–1.51%, pol: 0.13%–0.76%; Figure 6C 
and Supplemental Figure 24). Overall, these data validate our epi-
tope prediction method and provide evidence for the presence of 
hERV 4700–specific T cells within ccRCC.

Discussion
We report here a hierarchical analysis of hERV–immune microen-
vironment interactions within the TCGA pan-cancer dataset, inte-
grated with Ribo-Seq data, RNA-Seq data from immunotherapy- 
treated patients, and functional biological assays, to provide 
insight into hERV immunobiology in cancer. Our broad survey 
of hERV expression and association patterns provided multiple 
lines of evidence that hERVs shape the tumor immune microen-
vironment in several cancer types. Conditioning on cancer type, 
we observed that gene signatures of immune responsiveness 
(aPD1-responsive signature, effector immune cells) were posi-
tively associated with hERV expression, suggesting that hERVs 
may either directly interact with antitumor immunity through 
immune activation or provide a biomarker for an active antitumor 
immune response. In agreement with this view, we observed that 
hERVs were significantly prognostic in multiple cancer types, with 
the greatest enrichment of prognostic hERVs observed in ccRCC. 
Interestingly, BLCA was the only cancer type in which greater 
average hERV expression resulted in significantly longer survival 
times. This finding suggests potentially different hERV-mediated 
tumor immunobiology in BLCA and should be further explored 
in future studies. For IGS and CoxPH analyses, hERV expression 
data were normalized either (i) to total RNA-Seq read count (reads 
per million; RPM) to determine the impact of absolute hERV 
expression or (ii) to upper quartile normalization (UQN) of hERV 
reads within each sample to determine the impact of relative 
hERV proportions (Supplemental Tables 10 and 11). IGS patterns 
of association were strongly conserved between hERV expres-
sion by UQN and read normalization. We observed variability in 
hERV association patterns with 3 CD8+ T cell signatures derived 

Figure 4. Immune-related hERV signatures are prognostic for patient 
overall survival. (A) Schematic summary of hERV interactions with the 
immune system in the context of an anti-tumor immune response. (B) 
Venn diagram showing the number hERVs significantly associated (GLM, 
FDR-corrected P < 0.05) with genes corresponding to the upregulation 
(blue) or downregulation (orange) of the RIG-I–like pathway or positively 
associated (GLM, FDR corrected P < 0.05) with expression of B cell clones 
(green). (C) Kaplan-Meier survival curves for TCGA KIRC patients split by 
the upper (blue) and lower (red) 50th percentile of expression for each of 
the 3 hERV group signatures represented in A. (D) Change in multivariable 
CoxPH log-likelihood ratios in TCGA KIRC using clinical stage and/or M1–
M4 molecular subtyping and the 3 classes of hERV groups represented in B 
as predictors for survival. Stacked bars show the change in likelihood ratio 
for each feature when removed from the full model, as well as the χ2 test 
P value for each hERV group signature when removed from the full model 
(*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). (E) Univariable CoxPH coefficients for 
hERV signatures as a predictor for overall survival among each cancer type. 
FDR-corrected P value represented by red asterisks (*P ≤ 0.05).
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both be potentially targeted for immune activation through the use 
of nonspecific (e.g., checkpoint blockade therapy, innate immune 
agonists) or epitope-specific (vaccination, adoptive T cell therapy) 
immunotherapies. Further time-course immune profiling studies 
should be performed to study the mechanisms of hERV-mediated 
immune surveillance in a developing tumor.

With evidence of hERV-mediated activation of both innate 
and adaptive immune responses, we sought to examine whether  
these responses could be used to develop a model for patient 
prognosis in ccRCC. Apart from molecular subtyping, no molec-
ular markers have improved the prognostic capabilities of current 
clinical predictive systems in ccRCC, suggesting the potential 
for development of hERV-based signatures as a biomarker for 
survival. In attempt to identify such a prognostic biomarker, we 
created hERV signatures derived from our previous analysis of 
hERV interactions with the innate and adaptive immune response. 
Based on these signatures, we developed a model that provided 
significantly greater prognostic power than M1–M4 molecular 
subtyping and levels of prognostic information similar to those 
of traditional clinical staging. Additionally, while these hERV 
signatures were derived and optimized for ccRCC, we showed 
2 signatures to provide prognosis in several other tumor models 
related to ccRCC by hERV expression patterns, level of prognos-
tic hERVs, and tissue of origin, implying that additional hERV  
signatures for patient prognosis can be independently developed 
for other cancer types.

Last, we sought to develop a screening method for detection 
of hERVs actively undergoing translation. The implication of such 
a tool is the potential for development of immune response bio-
markers and antitumor T cell vaccine therapies, similar to those 
developed in neoantigen-based vaccine studies. Our analysis of 
tumor-specific hERVs in ccRCC identified CT-RCC hERV-E as the 
second highest differentially expressed hERV by RNA-Seq expres-
sion. This particular hERV has been well described in the litera-
ture as a ccRCC tumor–specific provirus with evidence of hERV- 
specific T cell responses (35–37). Within our Ribo-Seq analysis, 
we were underpowered to detect evidence of CT-RCC hERV-E 
translation among 2 ccRCC samples. However, our analysis of the 
GWIPS database provided evidence for the translation of CT-RCC 
hERV-E in human tumor cells but not in normal blood, fibroblasts, 
or muscle tissue. This conforms to the view that CT-RCC hERV-E 
has the capacity for translation under tumor-specific conditions 
and suggests that deeper Ribo-Seq coverage in ccRCC may be 
needed to increase the sensitivity of our computational screening 
to broaden the set of potentially targetable hERV epitopes. Our 
analysis of CT-RCC hERV-E RNA-Seq expression in TCGA KIRC 
data supports the previous report by Rooney et al. identifying this 
hERV as being upregulated in ccRCC and associated with a gene 
expression index of cytotoxicity (15). We observed the same signif-
icant association with their cytotoxicity signature and additionally 
identified a large proportion of other IGS strongly associated with 
its expression. Among these, the most significantly associated was 
the Treg signature, suggesting that expression of CT-RCC hERV-E 
may be also associated with immunosuppression. This strong 
association with immunosuppressive signatures suggests CT-RCC 
hERV-E may be another potential marker of response for immu-
notherapies such as aPD1 checkpoint blockade therapy.

epitopes have the capacity to trigger a T cell–driven antitumor 
response (35–37), we lacked the sensitivity to computationally 
identify public hERV-specific TCR clones. In agreement with this, 
comparison of MiXCR-derived TCR expression with previously 
described TCRs derived from amplicon-based adaptive TCR rep-
ertoire profiling in 3 TCGA KIRC samples demonstrated low total 
TCR counts of MiXCR data with low frequencies of overlapping 
clones (Supplemental Figure 26). In contrast, we observed a large 
pool of shared BCRs. It is important to note that BCR repertoires 
are likely more completely sampled from RNA-Seq data than are 
TCR repertoires, as we observed increased BCR sequence reads, 
consistent with the greater transcription of immunoglobulin 
mRNA from cells of the B cell lineage compared with TCR mRNA 
transcription from activated T cells. Thus, our study had greater 
power to detect BCR than TCR repertoire associations. Multiple 
sequence alignment of BCR-associated hERVs demonstrated 
clustering of proviral sequences by superfamily, suggesting that a 
B cell response generated against shared hERV epitopes is likely 
to occur within one or several closely related superfamilies. The 
higher hazard ratios among BCR-associated hERVs may be related  
to the lack of tumor specificity for these hERVs. The majority of 
IGS in ccRCC, including those for B cells, have been shown to be 
associated with worse prognosis (59). While the mechanism for 
this finding is currently undetermined, a potential contributor to 
this pattern may be a B cell response in which hERVs are generated 
in the tumor with epitopes shared by hERVS upregulated within 
the surrounding normal tissues. Further investigation should be 
performed to study the importance of this potential anti-hERV B 
cell response in ccRCC.

Evidence for hERV-mediated activation of the innate and 
adaptive immune responses suggests that expression of these pro-
viruses within tumors may contribute to immune editing of tumor 
cell populations. Highly immunogenic hERVs with the capacity 
to be recognized by endogenous T and B cell responses are likely  
cleared by the immune system or otherwise expressed under a 
heavily immunosuppressed microenvironment. There may also 
exist additional hERV epitopes that generate immune responses 
too weak to promote antitumor immunity. These two groups can 

Figure 5. hERVs demonstrate evidence of targetable epitope expres-
sion in ccRCC. (A) Association (GLM) of the 10 most positively (left) and 
negatively (right) differentially expressed hERVs (TCGA KIRC tumor relative 
to matched normal tissue) with IGS expression. FDR-corrected P values 
represented by intensity of color and direction of coefficient represented 
by color (red: positive, blue: negative). (B) Read coverage from ccRCC Ribo-
Seq data for hERV 4700, demonstrating read coverage of coding regions for 
gag (red), pol (blue), and env (green) genes. (C) Percent identity between 
all reading frames of translated amino acid sequences from the reference  
gag (red), pol (blue), and env (green) sequences for hERV 4700 with known  
hERV proteins in the NIH retroviral protein BLAST database. (D) Exchange 
efficiency for HLA-A*02:01 monomer UV exchange of predicted hERV 4700 
epitopes. (E) Left: RT-qPCR (responders: n = 7; nonresponders: n = 6)  
log2 expression of hERV 4700 gag, pol, and, env sequences. Right: 
hervQuant-derived (responders: n = 10; nonresponders: n = 10) hERV 4700 
expression in nivolumab-treated (aPD1-treated) ccRCC tumor biopsies. 
Statistical analysis performed using Mann-Whitney U test (*P ≤ 0.05, **P 
≤ 0.01, NS: P > 0.05). Data presented as values (dots) and median (middle 
line), with boxes encompassing the 25th to 75th percentile and whiskers 
encompassing minimum to maximum values.
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the BCR-associated signature and 34 with all prognostic hERVs, 
suggesting relatively low overlap between the set of predictive 
and prognostic hERVs. Overall, hervQuant is the first described  
method to our knowledge for comprehensive identification of poten-
tially targetable hERV epitopes. Further validation should be per-
formed to confirm the capacity of these potential hERV epitopes  
as therapeutic vaccine targets and to develop a robust hERV-based 
biomarker for immunotherapy response in ccRCC.

In summary, we describe a computational workflow, hervQuant, 
for robust quantification of individual hERVs using RNA-Seq data. 
The data gained through hervQuant provide insights into the 
pan-cancer landscape of hERV expression and immune modula-
tion. Within ccRCC, we found a distinct group of hERVs that were 
inversely associated with RIG-I–like signaling genes, prognosis, and 
IGS expression. Additionally, we examined the interaction between 
hERV expression in ccRCC and activation of B cell clonotypes, and 
demonstrated the capacity of the above-mentioned hERV classes 
to provide a multivariable model of patient prognosis that signifi-
cantly outperforms traditional clinical staging and molecular sub-
type prognosis models in ccRCC. We provide evidence for a new 
method of hERV epitope prediction based on differential hERV 
expression in the tumor, Ribo-Seq screening for translation, com-
putational epitope prediction, in vitro validation for HLA binding, 
and in vivo detection of epitope-specific T cells in a ccRCC tumor. 
Importantly, we observed that hERV sequences identified through 
this approach were significantly associated with aPD1 responsive-
ness in ccRCC tumors, supporting continued research into hERVs 
as biomarkers and therapeutic targets for immunotherapy. With the 
recent increasing interest in the role of hERVs in modulating the 
tumor immune microenvironment, we believe the work presented 
here substantially expands our understanding of hERV biology and 
opens the way for future development of technologies to exploit 
hERV biology for new therapeutic tools.

Methods
Alignment and quantification of hERV expression from RNA-Seq data. 
hERV genomic coordinates were derived from a previously a pub-
lished study by Vargiu et al. (3). Full-length hERV sequences were 
masked for low complexity reads (9 or more repeating single nt; 7 or 
more repeating double nt; 4 or more repeating nt patterns of 3; 3 or 
more repeating nt patterns of 4; 2 or more repeating patterns of 5; 2 
or more repeating nt patterns of 5) and compiled alongside human 
hg19 transcriptome reads into a reference file for downstream align-
ment. RNA-Seq FASTQ files were aligned to the hERV reference 
using STAR v2.5.3 (multimaps ≤10, mismatch ≤7) (60). BAM output 
files were filtered for reads that mapped to hERV reference using 
SAMtools (v1.4) (61), then quantified using Salmon v0.8.2 (Quant 
mode, –1 ISF) (62). Raw expression matrices were either normalized 
to hERV counts per million total FASTQ reads and log2 transformed, 
or normalized to the upper quartile hERV expression value among 
non-zero values within each sample and log2 transformed (Supple-
mental Tables 12–14). Only TCGA pan-cancer samples sequenced 
with Illumina HiSeq 2 × 50 bp were analyzed. See the supplemental 
material for optimization details and input parameters.

RNA-Seq expression, IGS analysis, and survival analysis. MapSplice- 
aligned, RSEM-quantified RNA-Seq expression matrices and sur-
vival data were downloaded from FireBrowse (http://firebrowse.

RNA-Seq analysis of hERV 4700 demonstrated preferential 
expression within ccRCC, with modest expression in normal  
kidney and liver. This preferential expression underscores the 
potential for hERV 4700–targeted immunotherapies, with 
the caveat that a particularly robust anti–hERV 4700 immune 
response could potentially result in on-target/on-tissue and 
on-target/off-tissue toxicity. We provided additionally valida-
tion for the transcription of this hERV through RT-qPCR and 
hervQuant analysis of an aPD1-treated ccRCC dataset, and 
showed that expression of hERV 4700 is associated with respon-
siveness to immunotherapy.

Ribo-Seq screening provided evidence for translation of hERV 
4700, supporting translation of epitopes that we further validated  
to bind MHC. Additionally, tetramer staining of predicted hERV 
4700 epitopes in 4 ccRCC tumors demonstrated the presence of 
infiltrating T cells with receptors specific for gag- and pol-derived 
epitopes, supporting the idea that (i) hERV 4700 may act as a direct 
target in ccRCC, whereby aPD1 could trigger an antitumor response 
against hERV 4700–derived epitopes, and (ii) hERV 4700 expres-
sion may be a new biomarker of aPD1 responsiveness in ccRCC. 
These same T cell populations were scarce to absent in healthy 
donor PBMCs, confirming the specificity of these T cells in ccRCC 
tumors. Tetramer-specific T cell frequencies were particularly high 
among ccRCC tumors (NSWQEMPV, 10.9%–24.8%; MVFPW-
PRPV, 13.5%–22.3%), suggesting that as much as 40% of tumor- 
infiltrating CD8+ T cells may be specific for these 2 hERV 4700 
epitopes. We recognize that these frequencies are particularly high 
for a tumor-infiltrating population, and several caveats exist for 
our analyses. First is the potential for T cell cross-reactivity against 
these tetramers, as well as peptide impurities that recognize other 
infiltrating T cell populations. Additionally, tetramer-positive popu-
lations contained a large range of fluorescence intensities, suggest-
ing these T cells do not necessarily comprise a single clone but likely 
several different clones with different TCR affinities. Future studies 
to characterize the TCR sequences and phenotypic characteristics 
of these tetramer-positive populations should be performed to fur-
ther elucidate the role of these populations and determine the basis 
for these and other potential caveats.

In addition to hERV 4700, we observed 172 other hERVs that 
were differentially expressed between aPD1 responders and non-
responders by hervQuant profiling (Wilcoxon’s test, P < 0.05), 
suggesting that a more comprehensive set of hERV expression 
signatures may exist for the development of an aPD1 response 
biomarker in ccRCC (Supplemental Figure 27). Of these hERVs, 6 
demonstrated overlap with the RIG-I–like down signature, one with 

Figure 6. hERV 4700 epitope–derived HLA-A*02:01 tetramers identify 
the presence of gag- and pol-specific T cells in ccRCC. (A) Flow cytometric 
representative gating strategy for identification of CD8+ epitope-specific T 
cells in ccRCC tumor. (B) Epitope gating for 5 pools of 6 tetramers (top), as 
well as staining of individual tetramers from pool 4 (bottom) in ccRCC. (C) 
Percent tetramer-specific CD8+ T cells for epitopes identified in B (tetramer 
2: NSWQEMVPV; tetramer 3: MVGPWPRPV) in ccRCC tumors (n = 4) and 
healthy donor PBMC samples (n = 4). Dots represent values for each sam-
ple, with bars representing the mean across each group. Negative controls 
for gating definitions include tetramer fluorescence-minus-one (FMO) (A) 
and nonspecific HLA-A*02:01-negative tetramer (B and C). Data presented 
in Figure 6 represent results from 4 independent experiments.
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incubation with 5 μg/ml streptavidin, R-PE conjugate (SAPE) for 10  
minutes on ice. Cells were then washed and stained for viability using BD 
fixable viability dye FVS700 according to the manufacturer’s directions. 
Last, cells were Fc blocked using mouse immunoglobulin (Millipore-
Sigma, catalog I5381) for 10 minutes, followed by surface staining for 20 
minutes on ice with the following markers: anti-CD45 (BD Biosciences; 
clone HI30, BV510), anti-CD3 (BD Biosciences; clone UCHT1, FITC), 
anti-CD8 (Beckman Coulter; SFCI21THy2D3 [T8], APC), anti-CD4 (BD 
Biosciences; clone RPA-T4, BV421), anti-CD14 (BD Biosciences; clone 
MϕP9, PerCP Cy 5.5), anti-CD19 (BD Biosciences; clone HIB19, PerCP 
Cy5.5), and anti-CD56 (BD Biosciences; clone BI59, PerCP Cy5.5).

A minimum of 1,000,000 events were collected for each sample 
on a BD LSRFortessa flow cytometer. FlowJo flow cytometry software 
version 10 was used for analyses of all flow cytometric data. Tumors 
were derived from viably frozen nephrectomy samples from UNC 
Chapel Hill and Vanderbilt University hospital patients with clear cell 
histology. Healthy donor PBMCs were screened by and purchased 
from Gulf Coast Regional Blood Center, Houston, Texas, USA.

Data availability. TCGA analyses were performed on data col-
lected and generated by the TCGA Research Network — expres-
sion matrices can be accessed at http://firebrowse.org/; TCGA raw 
data can be accessed in the database of Genotypes and Phenotypes 
(dbGaP, accession phs000178). Ribo-Seq analysis was performed 
on data collected by Loayza-Puch et al. and can be accessed in the 
NCBI’s Gene Expression Omnibus database (GEO GSE59821) (22). 
hervQuant expression matrices for TCGA pan-cancer (UQN and 
RPM) and aPD1-treated ccRCC (raw reads) RNA-Seq datasets are 
available in Supplemental Tables 12–14. The GWIPS ribosomal pro-
filing database is available at https://gwips.ucc.ie/. The hervQuant 
workflow reference and instructions are available for download at 
https://unclineberger.org/vincent/resources.

Statistics. GLM using the R “glm” package was used for all uni-
variable regression, unless otherwise stated. Univariable and mul-
tivariable CoxPH was performed with the R “survival” package. 
Multiple sequence alignment was performed with Clustal Omega 
through the R “msa” package (64). Differential hERV expression was 
calculated using the DESeq2 R package (49). For all CoxPH analyses, 
P value correction was performed using Bonferroni’s correction to 
maintain a conservative cutoff of significance. For all other analyses,  
5% FDR multiple testing correction for P values was performed 
unless otherwise stated. Welch’s t test was performed for statistical 
calculation in Figure 3C. Log rank test was performed for statistical 
calculation in Figure 4C, with no multiple testing correction. Multi-
variable CoxPH and χ2 test were performed for statistical calculation 
in Figure 4D, with no multiple testing correction. Mann-Whitney U 
test was performed for statistical calculation in Figure 5E, with no 
multiple testing correction. P < 0.05 was considered significant for 
all statistical tests performed.

Study approval and sample acquisition. The present studies in humans 
were reviewed and approved by the Vanderbilt University Human 
Research Protections Program, and the University of North Carolina at 
Chapel Hill IRB and the Office of Human Research Ethics (CB 7097). Sub-
jects provided written informed consent prior to their participation in the 
study. Biopsy samples were collected according to a protocol approved by 
the Vanderbilt University IRB (no. 160979), and the UNC IRB approved 
the biorepository protocol (LCCC 1212). Patients were identified through 
an IRB-approved protocol and identified using a pharmacy-based list. Line 

org/). Expression matrices were merged between all cancer types, 
upper quartile normalized within each sample, and log2 transformed. 
IGS were derived from previously described signatures (28–32), with 
expression calculated as the mean expression of each gene within the 
signature. TCGA LAML samples were omitted from analysis in order to 
prevent skewing of IGS patterns.

TCR/BCR alignment. MiXCR (v2.1.1) was used for identification of 
TCR and BCR sequences with TCGA KIRC (41). Following suggested 
run methods provided by MiXCR’s documentation for RNA-Seq data 
(https://mixcr.readthedocs.io/en/latest/rnaseq.html), paired-end 
FASTQ files were run through alignment in RNA-Seq mode, 2 rounds 
of contig assembly, extension of incomplete CDR3s, assembly, and 
export. Data were subsequently converted into an expression matrix, 
dropping all clones (defined as conserved amino acid CDR3 sequence) 
with expression in fewer than 10% of all TCGA KIRC samples, and 
scaled to counts per billion total FASTQ reads.

HLA-A*02:01 monomer UV exchange and β2-microglobulin ELISA. 
Epitope prediction was performed with the NetMHCpan 4.0 Server 
interface, defining predicted HLA binders as those with binding affin-
ity ≤500 nM (52). Predicted hERV epitopes were synthesized through 
New England Peptide array technology. Monomer exchange reaction 
was carried out using the BioLegend Flex-T HLA-A*02:01 monomer 
UV exchange protocol (57). Peptide exchange efficiency was per-
formed using the BioLegend HLA class I ELISA protocol (58).

RT-qPCR validation of hERV 4700. Expression levels of hERV 
4700 were assessed by RT-qPCR in a collection of ccRCC formalin- 
fixed, paraffin-embedded (FFPE) archival tissue from respond-
ers (n = 7 patients; 9 samples) and nonresponders (n = 6 patients; 6 
samples). RT-qPCR was performed on all available samples, with 
no further selection process. Total RNA isolation was performed 
using the RNAeasy FFPE Kit (QIAGEN). DNAse treatment was per-
formed during RNA isolation using RNase-free DNase I (QIAGEN). 
RNA quality and concentration were assessed using a NanoDrop 
ND-1000 spectrophotometer (NanoDrop Technologies).

First-strand cDNA synthesis was performed using 250 ng total 
RNA, random hexamers, and the SuperScript IV Reverse Transcriptase 
Kit (Life Technologies). RT-qPCR was performed on a CFX96 Touch 
Real-Time PCR Detection System (Bio-Rad) using TaqMan Universal 
PCR Master Mix (Applied Biosystems). RT-qPCR primer and probe 
sequences are shown in Supplemental Table 7. All analyses were per-
formed in triplicate, and relative RNA levels were determined using 
hypoxanthine phosphoribosyltransferase 1 (HPRT1) as an endogenous 
internal control (Applied Biosystems, catalog 4333768). A HeLa control  
RNA sample was included for inter-plate calibration. hERV 4700 
expression levels were calculated using the ΔΔCt method. Expression 
levels for 2 sample pairs derived from the same patients were averaged 
for statistical analyses in Figure 5E.

Flow cytometric analysis. Tetramer and cell surface staining was per-
formed as described previously (63). Briefly, viably frozen, histologically 
subtyped ccRCC tumor samples were thawed and stained for HLA-A2 
(BD Biosciences; clone BB7.2, allophycocyanin [APC]). Separately, 
samples positive for HLA-A2 were treated with 50 nM dasatinib for 30 
minutes at 37°C, then stained using approximately 10 μg/ml tetramer 
(phycoerythrin [PE]) or Beckman Coulter iTAg MHC class I human–
negative tetramer control on ice for 30 minutes. Cells were then washed 
and incubated on ice with 5 μg/ml biotin-conjugated anti-PE antibody 
(BioLegend; PE001) for 20 minutes, followed by 2 washes, then further 

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/11
https://www.jci.org/articles/view/121476#sd
http://firebrowse.org/
https://mixcr.readthedocs.io/en/latest/rnaseq.html
https://www.jci.org/articles/view/121476#sd


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

4 8 1 9jci.org   Volume 128   Number 11   November 2018

Foundation Collaborative Research Award, the UNC University 
Cancer Research Fund and UNC Oncology Clinical Translational 
Research Training Program (5K12CA120780), and the NIH (5-P50-
CA058223-22, 2-P30-CA016086-40, 1-U24-CA210988-01, and 
U54-CA198999). Funding for CCS was supported by the NIH 
(1F30CA225136-01). Funding for KEB was supported by the Merck- 
Cancer Research Institute Irvington Postdoctoral Fellowship. The 
results published here are in part based on data generated by the 
Cancer Genome Atlas managed by the NCI and National Human 
Genome Research Institute (NHGRI, dbGaP accession phs000178). 
The content is solely the responsibility of the authors and does  
not necessarily represent the official views of any funding agency.

Address correspondence to: Benjamin G. Vincent or Sara R. Selitsky 
or Jonathan S. Serody, Lineberger Comprehensive Cancer Center, 
University of North Carolina, CB# 7295, Chapel Hill, North Carolina 
27599-7295, USA. Phone: 919.966.8412; Email: benjamin_vincent@
med.unc.edu (B.G. Vincent). Phone: 919.445.0297; Email: selitsky@
email.unc.edu (S.R. Selitsky). Phone: 919.962.8409; Email:  
jonathan_serody@med.unc.edu (J.S. Serody).

of treatment for each patient varied. The response was first determined by 
chart review of clinicians’ notes and then confirmed by the authors of this 
article based on RECISTS 1.1 imaging criteria.

Author contributions
BGV and SRS conceived the study. CCS, DSB, SRS, and BGV 
created and ran the hervQuant software. CCS, SL, and SRS per-
formed statistical analyses for the manuscript. CCS, SRS, SJL, 
and BGV analyzed RNA-Seq and Ribo-Seq data and interpreted 
results. CCS and LMB performed flow cytometric studies. KEB, 
EMW, MIM, and WYK curated patient samples and information 
for flow cytometric and/or RT-qPCR studies. CCS, AADC, KEB, 
AP, SG, GB, and WKR performed the design, running, and analysis 
of RT-qPCR results. CCS and SRS prepared the manuscript, with 
participation from WKR, RS, JSS, JSP, and BGV.

Acknowledgments
We would like to acknowledge the UNC Tissue Procurement 
Facility for their assistance in collection of samples for this study. 
The project described was supported by the William Guy Forbeck 

 1. Löwer R, Löwer J, Kurth R. The viruses in all of 
us: characteristics and biological significance of 
human endogenous retrovirus sequences. Proc 
Natl Acad Sci U S A. 1996;93(11):5177–5184.

 2. Bannert N, Kurth R. The evolutionary dynamics 
of human endogenous retroviral families. Annu 
Rev Genomics Hum Genet. 2006;7:149–173.

 3. Vargiu L, et al. Classification and characteriza-
tion of human endogenous retroviruses; mosaic 
forms are common. Retrovirology. 2016;13:7.

 4. Katzourakis A, Rambaut A, Pybus OG. The evo-
lutionary dynamics of endogenous retroviruses. 
Trends Microbiol. 2005;13(10):463–468.

 5. Boller K, et al. Human endogenous retrovirus 
HERV-K113 is capable of producing intact viral 
particles. J Gen Virol. 2008;89(pt 2):567–572.

 6. Faff O, Murray AB, Schmidt J, Leib-Mösch C, Erfle 
V, Hehlmann R. Retrovirus-like particles from the 
human T47D cell line are related to mouse mam-
mary tumour virus and are of human endogenous 
origin. J Gen Virol. 1992;73 (pt 5):1087–1097.

 7. Wang-Johanning F, et al. Expression of multiple 
human endogenous retrovirus surface envelope  
proteins in ovarian cancer. Int J Cancer. 
2007;120(1):81–90.

 8. Büscher K, Trefzer U, Hofmann M, Sterry W, 
Kurth R, Denner J. Expression of human endog-
enous retrovirus K in melanomas and melanoma 
cell lines. Cancer Res. 2005;65(10):4172–4180.

 9. Wang-Johanning F, et al. Expression of human 
endogenous retrovirus k envelope transcripts 
in human breast cancer. Clin Cancer Res. 
2001;7(6):1553–1560.

 10. Contreras-Galindo R, et al. Human endogenous 
retrovirus K (HML-2) elements in the plasma of 
people with lymphoma and breast cancer. J Virol. 
2008;82(19):9329–9336.

 11. Wang-Johanning F, et al. Detecting the expres-
sion of human endogenous retrovirus E envelope 
transcripts in human prostate adenocarcinoma. 
Cancer. 2003;98(1):187–197.

 12. Yoshida M, Miyoshi I, Hinuma Y. Isolation and 
characterization of retrovirus from cell lines 

of human adult T-cell leukemia and its impli-
cation in the disease. Proc Natl Acad Sci U S A. 
1982;79(6):2031–2035.

 13. Kalyanaraman VS, Sarngadharan MG, Robert- 
Guroff M, Miyoshi I, Golde D, Gallo RC. A new 
subtype of human T-cell leukemia virus (HTLV-II) 
associated with a T-cell variant of hairy cell  
leukemia. Science. 1982;218(4572):571–573.

 14. Florl AR, Löwer R, Schmitz-Dräger BJ, Schulz 
WA. DNA methylation and expression of 
LINE-1 and HERV-K provirus sequences in 
urothelial and renal cell carcinomas. Br J Cancer. 
1999;80(9):1312–1321.

 15. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen 
N. Molecular and genetic properties of tumors 
associated with local immune cytolytic activity. 
Cell. 2015;160(1-2):48–61.

 16. Haase K, Mösch A, Frishman D. Differential 
expression analysis of human endogenous  
retroviruses based on ENCODE RNA-seq data. 
BMC Med Genomics. 2015;8:71.

 17. Paces J, Pavlícek A, Zika R, Kapitonov VV, Jurka 
J, Paces V. HERVd: the Human Endogenous 
RetroViruses Database: update. Nucleic Acids Res. 
2004;32(Database issue):D50.

 18. Paces J, Pavlícek A, Paces V. HERVd: database of 
human endogenous retroviruses. Nucleic Acids 
Res. 2002;30(1):205–206.

 19. Tongyoo P, Avihingsanon Y, Prom-On S, Mutiran-
gura A, Mhuantong W, Hirankarn N. EnHERV: 
enrichment analysis of specific human endoge-
nous retrovirus patterns and their neighboring 
genes. PLoS One. 2017;12(5):e0177119.

 20. Levy A, Sela N, Ast G. TranspoGene and micro-
TranspoGene: transposed elements influence  
on the transcriptome of seven vertebrates and 
invertebrates. Nucleic Acids Res. 2008;36(Data-
base issue):D47–D52.

 21. Smit A, Hubley R, Green P. RepeatMasker 
Open-4.0. 2013–2015. Institute for Systems 
Biology. http://repeatmasker. org. Accessed 
September 11, 2018.

 22. Loayza-Puch F, et al. Tumour-specific proline 

vulnerability uncovered by differential ribosome 
codon reading. Nature. 2016;530(7591):490–494.

 23. Lavie L, Kitova M, Maldener E, Meese E, Mayer J. 
CpG methylation directly regulates transcriptional 
activity of the human endogenous retrovirus family 
HERV-K(HML-2). J Virol. 2005;79(2):876–883.

 24. Okada M, et al. Role of DNA methylation in  
transcription of human endogenous retrovirus in 
the pathogenesis of systemic lupus erythemato-
sus. J Rheumatol. 2002;29(8):1678–1682.

 25. Stengel S, Fiebig U, Kurth R, Denner J. Regulation 
of human endogenous retrovirus-K expression in 
melanomas by CpG methylation. Genes Chromo-
somes Cancer. 2010;49(5):401–411.

 26. Chiappinelli KB, et al. Inhibiting DNA Methyla-
tion causes an interferon response in cancer via 
dsRNA including endogenous retroviruses. Cell. 
2015;162(5):974–986.

 27. Goel S, et al. CDK4/6 inhibition triggers anti-tumour  
immunity. Nature. 2017;548(7668):471–475.

 28. Chan KS, et al. Identification, molecular character-
ization, clinical prognosis, and therapeutic target-
ing of human bladder tumor-initiating cells. Proc 
Natl Acad Sci U S A. 2009;106(33):14016–14021.

 29. Prat A, et al. Phenotypic and molecular charac-
terization of the claudin-low intrinsic subtype of 
breast cancer. Breast Cancer Res. 2010;12(5):R68.

 30. Iglesia MD, et al. Prognostic B-cell signatures 
using mRNA-seq in patients with subtype- 
specific breast and ovarian cancer. Clin Cancer 
Res. 2014;20(14):3818–3829.

 31. Kardos J, et al. Claudin-low bladder tumors are 
immune infiltrated and actively immune  
suppressed. JCI Insight. 2016;1(3):e85902.

 32. Bindea G, et al. Spatiotemporal dynamics of 
intratumoral immune cells reveal the immune 
landscape in human cancer. Immunity. 
2013;39(4):782–795.

 33. Palmer C, Diehn M, Alizadeh AA, Brown PO. 
Cell-type specific gene expression profiles of 
leukocytes in human peripheral blood. BMC 
Genomics. 2006;7:115.

 34. Hugo W, et al. Genomic and transcriptomic  

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/11
mailto://benjamin_vincent@med.unc.edu
mailto://benjamin_vincent@med.unc.edu
mailto://selitsky@email.unc.edu
mailto://selitsky@email.unc.edu
mailto://jonathan_serody@med.unc.edu
https://doi.org/10.1073/pnas.93.11.5177
https://doi.org/10.1073/pnas.93.11.5177
https://doi.org/10.1073/pnas.93.11.5177
https://doi.org/10.1073/pnas.93.11.5177
https://doi.org/10.1146/annurev.genom.7.080505.115700
https://doi.org/10.1146/annurev.genom.7.080505.115700
https://doi.org/10.1146/annurev.genom.7.080505.115700
https://doi.org/10.1016/j.tim.2005.08.004
https://doi.org/10.1016/j.tim.2005.08.004
https://doi.org/10.1016/j.tim.2005.08.004
https://doi.org/10.1002/ijc.22256
https://doi.org/10.1002/ijc.22256
https://doi.org/10.1002/ijc.22256
https://doi.org/10.1002/ijc.22256
https://doi.org/10.1158/0008-5472.CAN-04-2983
https://doi.org/10.1158/0008-5472.CAN-04-2983
https://doi.org/10.1158/0008-5472.CAN-04-2983
https://doi.org/10.1158/0008-5472.CAN-04-2983
https://doi.org/10.1128/JVI.00646-08
https://doi.org/10.1128/JVI.00646-08
https://doi.org/10.1128/JVI.00646-08
https://doi.org/10.1128/JVI.00646-08
https://doi.org/10.1002/cncr.11451
https://doi.org/10.1002/cncr.11451
https://doi.org/10.1002/cncr.11451
https://doi.org/10.1002/cncr.11451
https://doi.org/10.1073/pnas.79.6.2031
https://doi.org/10.1073/pnas.79.6.2031
https://doi.org/10.1073/pnas.79.6.2031
https://doi.org/10.1073/pnas.79.6.2031
https://doi.org/10.1073/pnas.79.6.2031
https://doi.org/10.1126/science.6981847
https://doi.org/10.1126/science.6981847
https://doi.org/10.1126/science.6981847
https://doi.org/10.1126/science.6981847
https://doi.org/10.1126/science.6981847
https://doi.org/10.1038/sj.bjc.6690524
https://doi.org/10.1038/sj.bjc.6690524
https://doi.org/10.1038/sj.bjc.6690524
https://doi.org/10.1038/sj.bjc.6690524
https://doi.org/10.1038/sj.bjc.6690524
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1093/nar/30.1.205
https://doi.org/10.1093/nar/30.1.205
https://doi.org/10.1093/nar/30.1.205
https://doi.org/10.1371/journal.pone.0177119
https://doi.org/10.1371/journal.pone.0177119
https://doi.org/10.1371/journal.pone.0177119
https://doi.org/10.1371/journal.pone.0177119
https://doi.org/10.1371/journal.pone.0177119
https://doi.org/10.1038/nature16982
https://doi.org/10.1038/nature16982
https://doi.org/10.1038/nature16982
https://doi.org/10.1128/JVI.79.2.876-883.2005
https://doi.org/10.1128/JVI.79.2.876-883.2005
https://doi.org/10.1128/JVI.79.2.876-883.2005
https://doi.org/10.1128/JVI.79.2.876-883.2005
https://doi.org/10.1002/gcc.20751
https://doi.org/10.1002/gcc.20751
https://doi.org/10.1002/gcc.20751
https://doi.org/10.1002/gcc.20751
https://doi.org/10.1016/j.cell.2015.07.011
https://doi.org/10.1016/j.cell.2015.07.011
https://doi.org/10.1016/j.cell.2015.07.011
https://doi.org/10.1016/j.cell.2015.07.011
https://doi.org/10.1038/nature23465
https://doi.org/10.1038/nature23465
https://doi.org/10.1073/pnas.0906549106
https://doi.org/10.1073/pnas.0906549106
https://doi.org/10.1073/pnas.0906549106
https://doi.org/10.1073/pnas.0906549106
https://doi.org/10.1186/bcr2635
https://doi.org/10.1186/bcr2635
https://doi.org/10.1186/bcr2635
https://doi.org/10.1158/1078-0432.CCR-13-3368
https://doi.org/10.1158/1078-0432.CCR-13-3368
https://doi.org/10.1158/1078-0432.CCR-13-3368
https://doi.org/10.1158/1078-0432.CCR-13-3368
https://www.jci.org
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.cell.2016.02.065


The Journal of Clinical Investigation   R E S E A R C H  A R T I C L E

4 8 2 0 jci.org   Volume 128   Number 11   November 2018

features of response to anti-PD-1 therapy in  
metastatic melanoma. Cell. 2016;165(1):35–44.

 35. Cherkasova E, et al. Detection of an immuno-
genic HERV-E envelope with selective expres-
sion in clear cell kidney cancer. Cancer Res. 
2016;76(8):2177–2185.

 36. Takahashi Y, et al. Regression of human kidney 
cancer following allogeneic stem cell trans-
plantation is associated with recognition of 
an HERV-E antigen by T cells. J Clin Invest. 
2008;118(3):1099–1109.

 37. Cherkasova E, et al. Inactivation of the von Hippel- 
Lindau tumor suppressor leads to selective expres-
sion of a human endogenous retrovirus in kidney 
cancer. Oncogene. 2011;30(47):4697–4706.

 38. Liberzon A, Subramanian A, Pinchback R,  
Thorvaldsdóttir H, Tamayo P, Mesirov JP.  
Molecular signatures database (MSigDB) 3.0.  
Bioinformatics. 2011;27(12):1739–1740.

 39. Şenbabaoğlu Y, et al. Erratum to: Tumor immune 
microenvironment characterization in clear cell 
renal cell carcinoma identifies prognostic and 
immunotherapeutically relevant messenger RNA 
signatures. Genome Biol. 2017;18(1):46.

 40. Sauter M, et al. Human endogenous retrovirus 
K10: expression of Gag protein and detection of 
antibodies in patients with seminomas. J Virol. 
1995;69(1):414–421.

 41. Bolotin DA, et al. MiXCR: software for  
comprehensive adaptive immunity profiling.  
Nat Methods. 2015;12(5):380–381.

 42. Hancock DC, O’Reilly NJ. Synthetic peptides as 
antigens for antibody production. Methods Mol 
Biol. 2005;295:13–26.

 43. Ljungberg B, et al. EAU guidelines on renal 
cell carcinoma: 2014 update. Eur Urol. 
2015;67(5):913–924.

 44. Liu J, et al. An integrated TCGA pan-cancer clin-
ical data resource to drive high-quality survival 
outcome analytics. Cell. 2018;173(2):400–416.e11.

 45. Schumacher TN, Schreiber RD. Neoanti-
gens in cancer immunotherapy. Science. 
2015;348(6230):69–74.

 46. Ott PA, et al. An immunogenic personal neoanti-
gen vaccine for patients with melanoma. Nature. 
2017;547(7662):217–221.

 47. Wang RF, Wang HY. Immune targets and neoan-
tigens for cancer immunotherapy and precision 
medicine. Cell Res. 2017;27(1):11–37.

 48. Kreiter S, et al. Mutant MHC class II epitopes 
drive therapeutic immune responses to cancer. 
Nature. 2015;520(7549):692–696.

 49. Love MI, Huber W, Anders S. Moderated estima-
tion of fold change and dispersion for RNA-seq 
data with DESeq2. Genome Biol. 2014;15(12):550.

 50. Sahin U, et al. Personalized RNA mutanome vac-
cines mobilize poly-specific therapeutic immunity 
against cancer. Nature. 2017;547(7662):222–226.

 51. Michel AM, et al. GWIPS-viz: development of 
a ribo-seq genome browser. Nucleic Acids Res. 
2014;42(Database issue):D859–D864.

 52. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, 
Nielsen M. NetMHCpan-4.0: improved  
peptide-MHC class I interaction predictions  
integrating eluted ligand and peptide binding 
affinity data. J Immunol. 2017;199(9):3360–3368.

 53. Altman JD, et al. Phenotypic analysis of 
antigen-specific T lymphocytes. Science. 
1996;274(5284):94–96.

 54. Rodenko B, et al. Generation of peptide-MHC 
class I complexes through UV-mediated ligand 
exchange. Nat Protoc. 2006;1(3):1120–1132.

 55. Toebes M, et al. Design and use of conditional 
MHC class I ligands. Nat Med. 2006;12(2):246–251.

 56. Bakker AH, et al. Conditional MHC class I ligands 
and peptide exchange technology for the human 
MHC gene products HLA-A1, -A3, -A11, and -B7. 
Proc Natl Acad Sci U S A. 2008;105(10):3825–3830.

 57. Protocol for fluorescent Flex-TTM generation 
and antigen specific CD8+ T cell staining. 
https://www.biolegend.com/media_assets/
support_protocol/Protocol%20for%20fluores-
cent%20tetramer%20generation%20and%20
cell%20staining%2006202016.pdf. Revised 
June 20, 2016. Accessed September 11, 2018.

 58. Protocol for HLA class I ELISA to evaluate 
peptide exchange. http://www.biolegend.com/
media_assets/flex-t/Protocol_for_HLA_class_I_
ELISA_05272016.pdf. Revised May 23, 2016. 
Accessed September 11, 2018.

 59. Iglesia MD, Parker JS, Hoadley KA, Serody JS, 
Perou CM, Vincent BG. Genomic analysis of 
immune cell infiltrates across 11 tumor types.  
J Natl Cancer Inst. 2016;108(11):djw144.

 60. Dobin A, et al. STAR: ultrafast universal RNA-seq 
aligner. Bioinformatics. 2013;29(1):15–21.

 61. Li H, et al. The sequence alignment/map 
format and SAMtools. Bioinformatics. 
2009;25(16):2078–2079.

 62. Patro R, Duggal G, Love MI, Irizarry RA,  
Kingsford C. Salmon provides fast and bias-
aware quantification of transcript expression. 
Nat Methods. 2017;14(4):417–419.

 63. Dolton G, et al. More tricks with tetramers: 
a practical guide to staining T cells with 
peptide-MHC multimers. Immunology. 
2015;146(1):11–22.

 64. Bodenhofer U, Bonatesta E, Horejš-Kainrath C, 
Hochreiter S. msa: an R package for multiple  
sequence alignment. Bioinformatics. 
2015;31(24):3997–3999.

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/11
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1016/j.cell.2016.02.065
https://doi.org/10.1158/0008-5472.CAN-15-3139
https://doi.org/10.1158/0008-5472.CAN-15-3139
https://doi.org/10.1158/0008-5472.CAN-15-3139
https://doi.org/10.1158/0008-5472.CAN-15-3139
https://doi.org/10.1172/JCI34409
https://doi.org/10.1172/JCI34409
https://doi.org/10.1172/JCI34409
https://doi.org/10.1172/JCI34409
https://doi.org/10.1172/JCI34409
https://doi.org/10.1038/onc.2011.179
https://doi.org/10.1038/onc.2011.179
https://doi.org/10.1038/onc.2011.179
https://doi.org/10.1038/onc.2011.179
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1186/s13059-017-1180-8
https://doi.org/10.1186/s13059-017-1180-8
https://doi.org/10.1186/s13059-017-1180-8
https://doi.org/10.1186/s13059-017-1180-8
https://doi.org/10.1186/s13059-017-1180-8
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1038/nmeth.3364
https://doi.org/10.1016/j.eururo.2015.01.005
https://doi.org/10.1016/j.eururo.2015.01.005
https://doi.org/10.1016/j.eururo.2015.01.005
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1126/science.aaa4971
https://doi.org/10.1126/science.aaa4971
https://doi.org/10.1126/science.aaa4971
https://doi.org/10.1038/nature22991
https://doi.org/10.1038/nature22991
https://doi.org/10.1038/nature22991
https://doi.org/10.1038/cr.2016.155
https://doi.org/10.1038/cr.2016.155
https://doi.org/10.1038/cr.2016.155
https://doi.org/10.1038/nature14426
https://doi.org/10.1038/nature14426
https://doi.org/10.1038/nature14426
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/nature23003
https://doi.org/10.1038/nature23003
https://doi.org/10.1038/nature23003
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.4049/jimmunol.1700893
https://doi.org/10.1126/science.274.5284.94
https://doi.org/10.1126/science.274.5284.94
https://doi.org/10.1126/science.274.5284.94
https://doi.org/10.1038/nprot.2006.121
https://doi.org/10.1038/nprot.2006.121
https://doi.org/10.1038/nprot.2006.121
https://doi.org/10.1038/nm1360
https://doi.org/10.1038/nm1360
https://doi.org/10.1073/pnas.0709717105
https://doi.org/10.1073/pnas.0709717105
https://doi.org/10.1073/pnas.0709717105
https://doi.org/10.1073/pnas.0709717105
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1111/imm.12499
https://doi.org/10.1111/imm.12499
https://doi.org/10.1111/imm.12499
https://doi.org/10.1111/imm.12499

