Go to JCI Insight
Jci spelled out white on transparent.20160208
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • Fibrosis (Jan 2018)
    • Glia and Neurodegeneration (Sep 2017)
    • Transplantation (Jun 2017)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

Jci only white

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy
Tori N. Yamamoto, … , Nicholas P. Restifo, Christopher A. Klebanoff
Tori N. Yamamoto, … , Nicholas P. Restifo, Christopher A. Klebanoff
Published January 29, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI121491.
View: Text | PDF
Categories: Research In-Press Preview Immunology Oncology

T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy

  • Text
  • PDF
Abstract

Across clinical trials, T cell expansion and persistence following adoptive cell transfer (ACT) have correlated with superior patient outcomes. Herein, we undertook a pan-cancer analysis to identify actionable ligand/receptor pairs capable of compromising T cell durability following ACT. We discovered that FASLG, the gene encoding the apoptosis-inducing ligand FasL, is overexpressed within the majority of human tumor microenvironments (TMEs). Further, we uncovered that Fas, the receptor for FasL, is highly expressed on patient-derived T cells used for clinical ACT. We hypothesized that a cognate Fas-FasL interaction within the TME might limit both T cell persistence and anti-tumor efficacy. We discovered that genetic engineering of Fas variants impaired in the ability to bind FADD functioned as dominant negative receptors (DNRs), preventing FasL-induced apoptosis in Fas-competent T cells. T cells co-engineered with a Fas DNR and either a T cell receptor or chimeric antigen receptor exhibited enhanced persistence following ACT, resulting in superior anti-tumor efficacy against established solid and hematologic cancers. Despite increased longevity, Fas DNR-engineered T cells did not undergo aberrant expansion or mediate autoimmunity. Thus, T cell-intrinsic disruption of Fas signaling through genetic engineering represents a potentially universal strategy to enhance ACT efficacy across a broad range of human malignancies.

Authors

Tori N. Yamamoto, Ping-Hsien Lee, Suman K. Vodnala, Devikala Gurusamy, Rigel J. Kishton, Zhiya Yu, Arash Eidizadeh, Robert Eil, Jessica Fioravanti, Luca Gattinoni, James N. Kochenderfer, Terry J. Fry, Bulent Arman Aksoy, Jeffrey Hammerbacher, Anthony C. Cruz, Richard M. Siegel, Nicholas P. Restifo, Christopher A. Klebanoff

×

Full Text PDF | Download (2.38 MB)

Follow JCI: Facebook logo white Twitter logo v2 Rss icon
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts