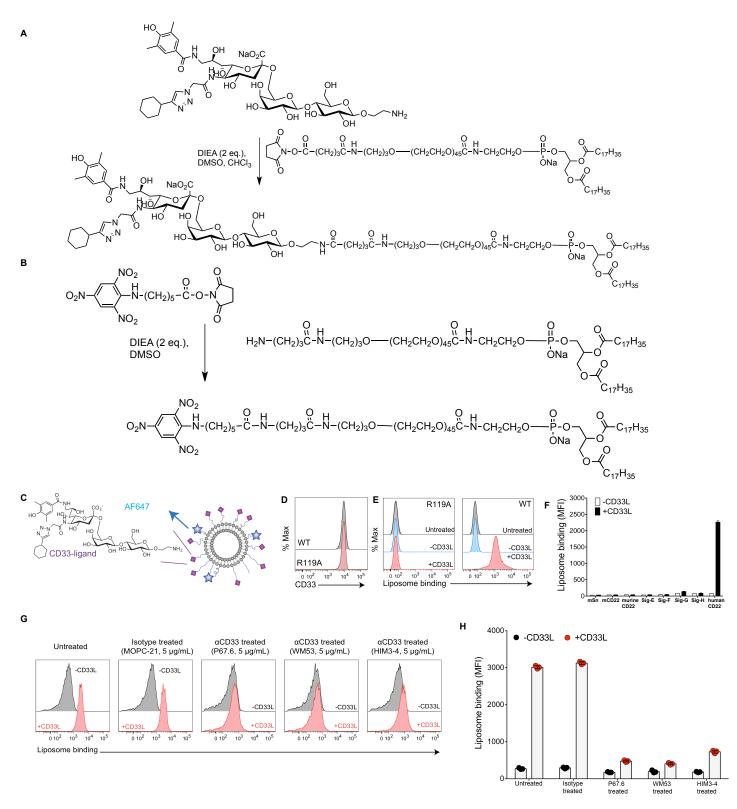
Supporting Information to:

CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen

Shiteng Duan¹, Cynthia J. Koziol-White², William Jester², Corwin M. Nycholat¹, Matthew S.


Macauley¹, Reynold A Panettieri Jr², and James C. Paulson¹

¹Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.

²Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NH,

USA.

Supplementary Materials:

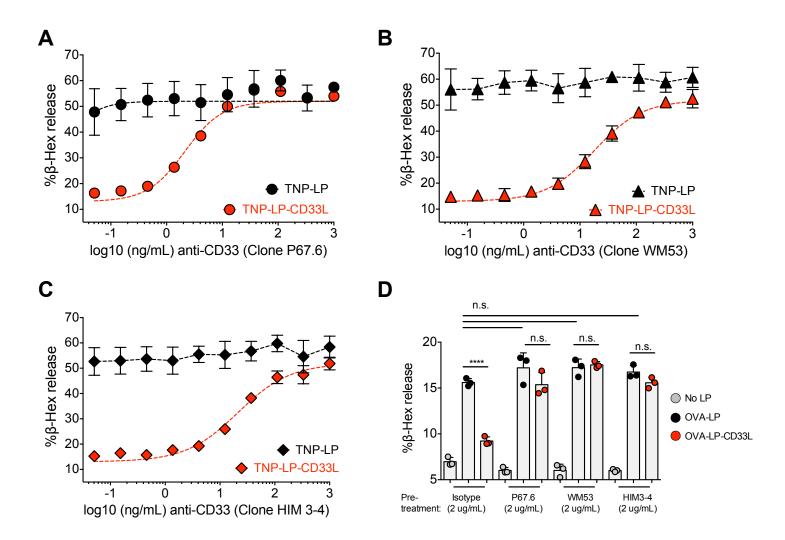
Supplemental Figure 1. Formulation and characterization of antigenic liposomes displaying CD33 ligand.

(A) Reaction condition used to couple human CD33-ligand to PEGylated lipid.

(**B**) Reaction condition used to couple tri-nitrophenol (TNP, Biosearch technology, # N-1010-100) to PEGylated lipid.

(C) A schematic representation of a fluorescent liposome (AF647) formulated with CD33L only (LP-CD33L).

(**D**) Anti-CD33 (Clone WM53) staining of CHO cells transfected with WT or R119A CD33.


(E) Binding or fluorescent liposome +/- CD33L (20 μ M) to CHO cells transfected with WT or R119A CD33.

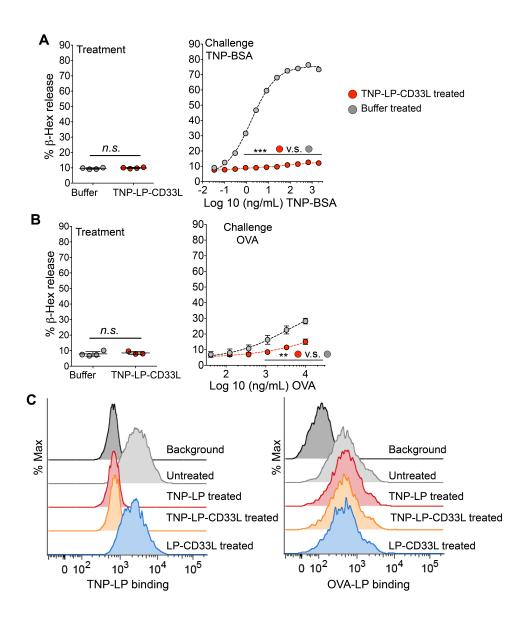
(F) Binding of fluorescent liposomes +/- CD33L (20 μ M) to CHO cell lines transfected with different Siglecs. N = 3 per condition, values were plotted as means ± S.D.

(G) Binding of fluorescent TNP-LP or TNP-LP-CD33L (20 μ M) to un-sensitized LAD2 cells in the presence of isotype control or different clones of anti-CD33 antibodies (5 μ g/mL).

(H) Quantification of liposome binding to LAD2 cells in G. (G, H) n=3 per condition. Shown are representative from three independent experiments.

Shown are representative from two (**D-F**) or three (**G**, **H**) independent experiments.

Supplemental Figure 2. Degranulation of LAD2 cells induced by antigenic liposomes in the presence of anti-CD33 antibodies.

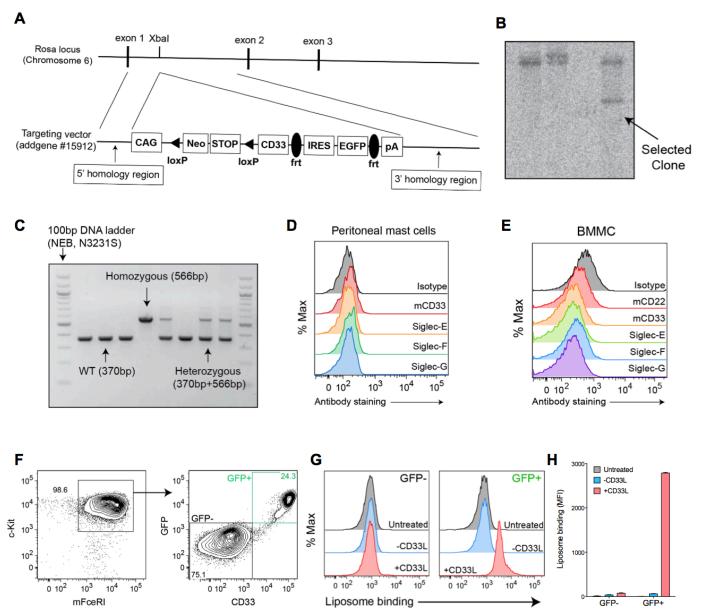

(**A-C**) Degranulation induced by TNP-LP or TNP-LP-CD33L (5 μ M) in the presence of isotype or anti-CD33 antibodies. (**A**) Clone 67.6. (**B**) Clone WM53. (**C**) Clone HIM 3-4. N = 4 per condition, values were plotted as means ± S.D.

(**D**) Degranulation induced by OVA-LP or OVA-LP-CD33L (30 μ M liposome containing 1.4 μ g/mL of OVA) in the presence of isotype or CD33 antibodies (2 μ g/mL). N = 3 per condition.

(A-C) LAD2 cells were sensitized with anti-TNP-IgE (1 μ g/mL) overnight. (D) LAD2 cells were sensitized with anti-OVA-IgE (Clone EC1 and PMP68, 1 μ g/mL each clone) overnight.

Shown are representative data of three (A-C) or two (D) independent experiments.

(**D**) was analyzed by 1-way ANOVA followed by Tukey's test: **** P < 0.0001; n.s., not significant (P > 0.05).


Supplemental Figure 3. Antigenlic liposomes with CD33L desensitize mast cells in vitro.

(A) Degranulation induced by treatment with buffer or TNP-LP-CD33L (5 μ M, *left*). Degranulation induced by subsequent challenge of TNP³¹BSA (Biosearch technology, *right*).

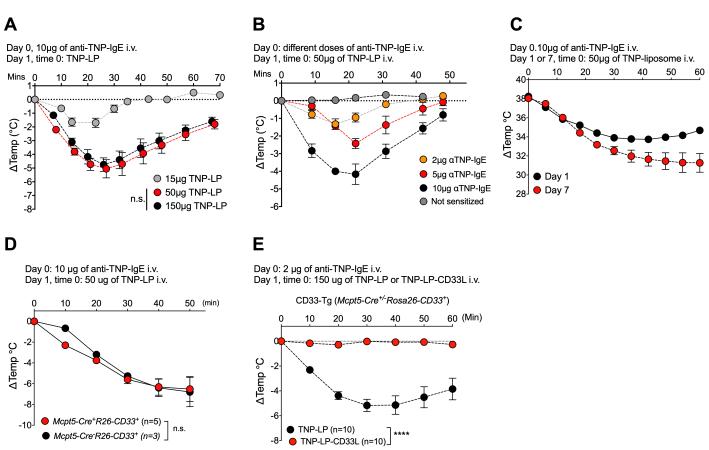
(B) Degranulation induced by treatment with buffer or TNP-LP-CD33L (5 μ M, *left*). Degranulation induced by subsequent challenge with ovalbumin (OVA, Worthington, *right*). (K and L, n=4 per condition, values were plotted as means ± S.D.)

(C) Binding of fluorescent TNP-LP (20 μ M) or fluorescent OVA-LP (20 μ M) to LAD2 cells treated with TNP-LP, TNP-LP-CD33L or LP-CD33L (10 μ M). Background of liposome binding was determined using untreated LAD2 cells.

LAD2 cells were pre-sensitized overnight with α TNP-IgE, and α OVA-IgEs (Clone MEB38, PMP-68 and E-C1 each at 500 ng/mL). Results are representative of at least two independent experiments. Data were analyzed by unpaired two-tailed Student's t tests: ** *P* < 0.01; *** *P* <0.001; n.s., not significant (*P* > 0.05).

Supplemental Figure 4. Development of Rosa26-Stop^{fl/fl}-CD33 transgenic mice and characterization murine mast cells.

(A) A schematic scheme of a targeting vector containing cDNA encoding full length CD33 incorporated into the Rosa26-locus through homologous recombination.


(B) Southern blot analysis of PRX embryonic stem cells transfected with the targeting vector. Arrow indicated selected clone with targeting vector inserted into the Rosa locus.

(**C**) PCR amplification of WT, heterozygous or homozygous Rosa26-Stop^{fl/fl}-CD33 transgenic mice. WT=370bp, homozygous=566bp, and heterozygous=370bp+566bp.

(D) Antibody staining of murine Siglecs on peritoneal cells harvested from a C57BL/6J mice.

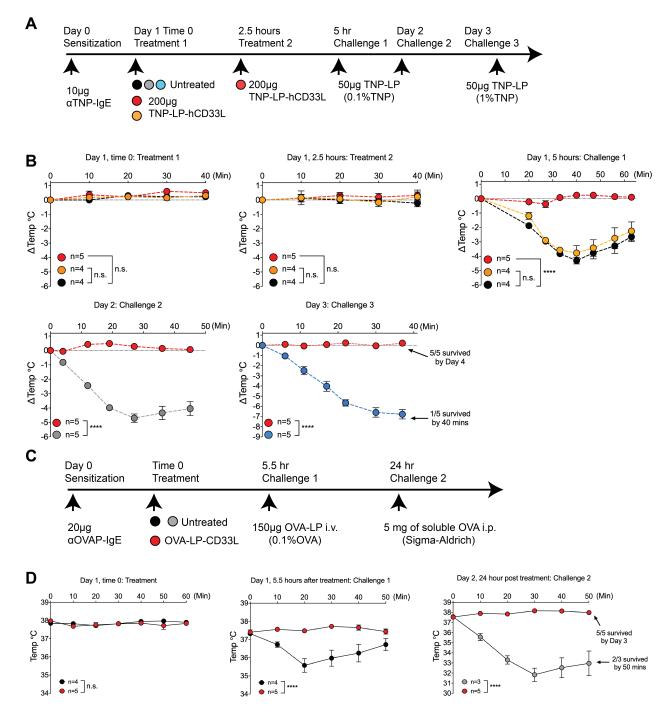
(E) Antibody staining of murine Siglecs on mast cells derived from bone marrow of a C57BL/6J mice.
(F) Flow cytometry analysis of bone marrow derived mast cells (BMMCs) cultured from CD33-Tg mice.

(**G**, **H**) Binding of fluorescent liposome +/- CD33L (20 μ M) to GFP⁺ or GFP⁻ BMMCs. Binding data was representative from at least three independent experiments. (**h**) Quantification of mean fluorescent intensity quantified from (**G**). (**H**) N = 2 per data point. (**F-H**) Shown are representative data from three independent culture or experiments.

Supplemental Figure 5. Anaphylaxis induced by TNP-LP or TNP-LP-CD33L.

(A) Dose response of anaphylaxis induced by TNP-LP in mice intravenously sensitized with α TNP-IgE (10 μ g), n = 4/group.

(**B**) Rectal temperature drop induced by TNP-LP (50 μ g) in mice sensitized with no IgE, 2, 5, or 10 μ g of anti-TNP-IgE), n= 3 or 4/group.

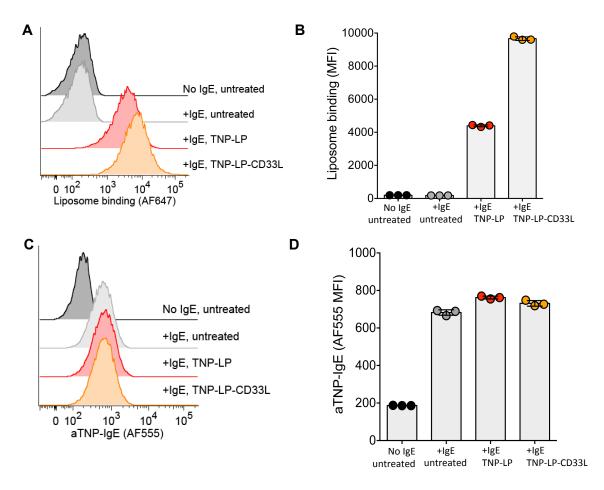

(**C**) Rectal temperature drop induced by TNP-LP (50 μ g) 1 or 7 days after sensitization with α TNP-IgE (10 μ g, Clone MEB-38). N = 4 or 5/group.

C57BL/6J mice were used in A and B. CD33-Tg and Control-Tg mice were used in C.

(**D**) Decrease of rectal temperature induced by TNP-LP (50 μ g, 200uL of 0.33mM liposome) in Control-Tg or CD33-Tg. Sensitized with 10 μ g of anti-TNP-IgE.

(E) Decrease of rectal temperature induced by TNP-LP or TNP-LP-CD33L (150 μ g or 200uL of 1mM liposome) in CD33 Tg previously sensitized with 2 μ g of anti-TNP-IgE.

(A-E) values were plotted as means \pm s.e.m. (A, D and E) were analyzed by repeated measures 2way ANOVA: **** *P* <0.0001; n.s., not significant (*P* >0.05).


Supplemental Figure 6. Antigenic liposomes with CD33L desensitize mice to subsequent antigen challenges.

(A) Injection scheme to determine the dose requirement for TNP-LP-CD33L to desensitize mice. CD33-Tg mice were used in TNP-LP-CD33L treated group (*red, orange*). CD33-Tg and Control-Tg mice were used in the three untreated groups (*black, grey, and blue*) for the subsequent challenges at 5h, Day 2 and Day 3.

(**B**) Rectal temperature induced by indicated by treatment or challenges described in **A**. The 2-injection scheme (*red*) was representative of three n = 4 or 5 experiments.

(C) Injection scheme using OVA-LP-CD33L to desensitize mice. CD33-Tg mice were used in OVA-LP-CD33L treated group (*red*). CD33-Tg and Control-Tg mice were used in the two untreated

groups (*black*, and *grey*) for the subsequent challenges at 5.5h, and Day 2. All mice were intraveneously sensitized with 20 μ g of anti-OVA-IgE (Clone EC1 and PMP68, 10 μ g each). (**D**) Rectal temperature induced by indicated by treatment or challenges described in **C**. Data shown was representative of two n=5 experiments.Values were plotted as means ± s.e.m. Interaction P values in (**B** and **D**) were determined by repeated measures 2-way ANOVA followed by Tukey's test: **** *P* <0.0001; n.s., not significant (*P* >0.05).

Supplemental Figure 7. Impact of TNP-LP or TNP-LP-CD33L on IgE.

LAD2 cells were sensitized with AF555 labeled anti-TNP-IgE (500 ng/mL) overnight.

(A) Binding of TNP-LP or TNP-LP-CD33L (20 μ M) to LAD2 cells.

(B) Quantification of mean fluorescent intensity of liposome binding from A,

(C) Signal from AF555 labeled IgE on LAD2 cells.

(D) Quantification of mean fluorescent intensity of anti-TNP-IgE. N=3 per condition.

Supplemental Table 1	. Antibodies us	sed in flow cytomet	ry.
-----------------------------	-----------------	---------------------	-----

Reactivity	Antigen	Clone or Cat #	Fluorophor	Vendor	Working concentration
Mouse	c-Kit	2B8	APC-Cy7	Biolegend	1-2µg/mL
Mouse	FcεRI	1-Mar	PE/Cy7	Biolegend	1-2µg/mL
Mouse	CD22	OX-97	APC	Biolegend	1-2µg/mL
Mouse	CD33	9A11	APC	eBioscience	1-2µg/mL
Mouse	Siglec-E	#750620	AF647	R&D	1-2µg/mL
Mouse	Siglec-F	9C7(1)	AF647	In house	1-2µg/mL
Mouse	Siglec-G	SH2.1	AF647	eBioscience	1-2µg/mL
N.A.	Isotype (Rat IgG1)	RTK2071	AF647	Biolegend	1-2µg/mL
N.A.	lsotype (Rat IgG2a)	RTK2758	AF647	Biolegend	1-2µg/mL
N.A.	lsotype (Rat IgG2b)	RTK4530	AF647	Biolegend	1-2µg/mL
Mouse	CD45	30-F11	BV 605	Biolegend	1-2µg/mL
Mouse	F4/80	BM8	PE/Cy7	Biolegend	1-2µg/mL
Mouse	Siglec-F	E50-2440	BV421	BD	1-2µg/mL
Mouse	CD11b	M1/70	BV650	Biolegend	1-2µg/mL
Mouse	Fc Blocker	# 101320	N.A.	Biolegend	2µg/mL
Human	CD33	WM53	PE or PE/Cy7	Biolegend	1-2µg/mL
Human	CD33	P67.6	PE	Biolegend	1-2µg/mL
Human	FcεRI	CRA-1	BV 421	Biolegend	1µg/mL
Human	c-Kit	104D2	AF488	Biolegend	1µg/mL
Human	CD45	HI30	APC-Cy7	Biolegend	1µg/mL
Human	CD3	HIT3a	PE/Cy7	Biolegend	1µg/mL
Human	CD19	H1B19	PE/Cy7	Biolegend	1µg/mL
Human	CD56	HCD56	BV510	Biolegend	1µg/mL
Human	Siglec-1 (CD169)	7-239	PE	Biolegend	2µg/mL
Human	CD22	HIB22	PE	Biolegend	2µg/mL
Human	Siglec-5	IA5	PE	Biolegend	2µg/mL
Human	Siglec-6	# FAB2859P	PE	R&D System	50 X
Human	Siglec-7	6-434	PE	Biolegend	2µg/mL
Human	Siglec-8	7C9	PE	Biolegend	2µg/mL
Human	Siglec-9	K8	PE	Biolegend	2µg/mL
Human	Siglec-10	5G6	PE	Biolegend	2µg/mL
Human	Fc Blocker	# 422302	N.A.	Biolegned	2µg/mL
N.A.	Unknown (Isotype control)	MOPC-21	PE or PE/Cy7	Biolegend	2µg/mL

Supplemental Table 2. Antibodies used in western blotting.

Antigen	Residue	Clone/Cat #	Vendor	Dilution Factor
P-Syk	Tyr352	#2701	Cell signaling	1000
Syk		#13198	Cell Signaling	2000
P-PLCγ1	Tyr783	D6M9S /#14008	Cell Signaling	1000
P-PLCγ2	Tyr1217	#3871	Cell Signaling	1000
P-JNK (SAPK/JNK)	Thr183/Tyr185	81E11/ #4668	Cell Signaling	2000
P-Akt	Ser473	D9E/ #4060	Cell Signaling	2000
P-MEK 1/2	Ser217/221	41G9/#9154	Cell Signaling	2000
P-Erk 1/2 (p44/42 MAPK)	Thr202/Tyr204	D13.14.4E/ #4370	Cell Signaling	2000
Erk 1/2 (p44/42 MAPK)		137F5/# 4695	Cell Signaling	5000
Anti-rabbit IgG, HRP-linked		#7074	Cell Signaling	2000

Reference:

1. Gicheva N, Macauley MS, Arlian BM, Paulson JC, and Kawasaki N. Siglec-F is a novel intestinal M cell marker. *Biochemical and biophysical research communications.* 2016;479(1):1-4.