Hsp90B enhances MAST1-mediated cisplatin resistance by protecting MAST1 from proteosomal

degradation
Pan et al.
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Supplemental Figure 1. MAST1 is more susceptible than cRaf or AKT to degradation by 17-
AAG in cisplatin-resistant cancer cells. KB-3-1°R (A) and A549°*R (B) cells were treated with
17-AAG at the indicated concentrations and time prior to immunoblotting. Protein levels were
determined by densitometry analysis. Data are mean = SD from three technical replicates and
representative of two independent biological experiments.
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Supplemental Figure 2. Hsp90 inhibition does not alter MAST1 gene expression in cisplatin-
resistant cancer cells. KB-3-1°R and A549°R cells were treated with increasing concentrations
of 17-AAG for 24 h. MASTI mRNA level was determined by quantitative RT-PCR. Data are

mean = SD from three technical replicates and representative of three independent biological
experiments. Statistical analysis was performed by 1-way ANOVA.
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Supplemental Figure 3. 17-AAG treatment sensitizes cisplatin-resistant cancer cells to
cisplatin through MAST1. (A) Cisplatin ICso upon 17-AAG treatment with or without MAST1
knockdown in A549¢R cells. Cisplatin ICso values were determined by CellTiter-Glo assay. (C)
Cisplatin ICso upon 17-AAG treatment, MAST1 knockdown, and rescue expression of MAST1
WT. Three different sShRNA clones were used for MAST1 knockdown. (B and D) Effect of 17-
AAG treatment and MAST1 knockdown (B), and knockdown and rescue expression of MAST1
WT (D) on tumor proliferation was assessed by Ki-67 immunohistochemistry (IHC) staining.
Scale bars represent 50 pm. Data shown are representative of three (A and C) and two (B and D)
independent biological experiments. Data are mean + SD from three technical replicates. Statistical
analysis was performed by 1-way ANOVA (*P<0.05; ***P<0.005; ****P<(0.0001).
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Supplemental Figure 4. Hsp90B stabilizes MAST1 and contributes to cisplatin resistance. (A)
Interactions between hsp90 isoforms and 17-AAG were determined by Biacore SPR. (B-C) Effect
of 17-AAG on MAST]1 protein level, cell viability, and cisplatin response in cells with hsp90A or
hsp90B knockdown. KB-3-1¢R and AS549R cells with hsp90A or hsp90B knockdown were
treated with 17-AAG (100 nM) in the presence of sublethal doses of cisplatin (KB-3-1°*R: 5 pg/ml,
A549¢sR: 2 ng/ml). (D) Effect of hsp90B knockdown and MAST1 overexpression on tumor
proliferation. Scale bars represent 50 um. Data shown are representative of three (A-C) and two
(D) independent biological experiments. Data are mean + SD from three technical replicates.
Statistical analysis was performed by 1-way ANOVA (****P<0.0001).
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Supplemental Figure 5. Proteasome inhibitor MG-132 stabilizes hsp90 client proteins
MASTI1, cRaf, and AKT but with different sensitivities. 293T cells (A) or KB-3-1°R and
A549°R cells (B) were treated with MG-132 (10 uM) for the indicated times before the addition
of 17-AAG (1 uM) for 4 hours. Protein levels were determined by densitometry analysis. Data are
mean = SD from three technical replicates and representative of two independent biological
experiments.
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Supplemental Figure 6. MAST1 protein level contributes to MAST1 activity, cisplatin
resistance, and tumor proliferation. (A-B) MAST]1 kinase activity (A) and cisplatin ICso were
determined in KB-3-1¢*R and A549¢R cells with MAST1 modulation. MAST1 was enriched from
cells by immunoprecipitation and MAST1 activity was assessed by ADP-Glo kinase assay using
myelin basic protein (MBP) as a substrate. Cisplatin ICso was assessed by CellTiter Glo assay. (C)
Effect of 17-AAG and MAST1 WT or 2KR expression on cisplatin-resistant tumor proliferation.
Scale bars represent 50 um. Data shown are representative of two independent biological
experiments for (A)-(C) and are mean + SD from three technical replicates for (A) and (B).
Statistical analysis was performed by 1-way ANOVA (***P<0.005; ****P<0.0001).
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Supplemental Figure 7. MAST]1 interacts with CHIP and hsp90B. (A) Endogenous interaction
of CHIP, hsp90B, and MASTI1 in cisplatin-resistant cancer cells. (B-C) Effect of CHIP
overexpression (B) or knockout (C) on activation status of MAST1 downstream effectors, MEK1
and ERK1/2 in the presence or absence of cisplatin. Cells were treated with 5 mg/ml of cisplatin
and 50 nM of 17-AAG for 48 hours. Activation of MEK1 and ERK1/2 was assessed by
phosphorylation of MEK1 S217/S221 and ERK1/2 T202/Y204, respectively. (D) Interaction
between MAST1 WT or 2KR and hsp90B was quantified by Biacore SPR analysis. Dissociation
constants (Kd) values for MAST1 WT-hsp90B or MAST1 2KR-hsp90B interaction are compared.
(E) Protein stability of MASTI WT or 2KR in CHIP knockdown cells. Cells with CHIP
knockdown were treated with 5 pg/ml cycloheximide (CHX) for the indicated times. Data shown
are representative of two (A-D) and one (E) independent biological experiments. Data are mean +
SD from three technical replicates for (E). Statistical analysis was performed by two-tailed student
t test for (D) and 1-way ANOVA for (E).
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Supplemental Figure 8. CHIP-mediated degradation of MAST]1 sensitizes cisplatin-resistant
cells to cisplatin. Effect of MAST1 WT rescue expression on cisplatin sensitivity and MAST1
protein level in KB-3-1R (A) and A549¢*R (B) cells with CHIP overexpression and MAST1
knockdown. Two distinct sShRNA clones (#2 and #3) were used for MAST1 knockdown. Cells
with flag-CHIP and MAST1 knockdown or WT overexpression were treated with increasing
concentrations of cisplatin for 48 h. Cell viability was measured by CellTiter-Glo assay and
cisplatin ICso was calculated using Graphpad Prism 8. Data are mean + SD from three technical
replicates and representative of three independent biological experiments for (A) and (B).
Statistical analysis was performed by 1-way ANOVA (***P<0.005; ****P<0.0001).
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Supplemental Figure 9. Cisplatin-resistant cell viability is further decreased by 17-AAG and
lestaurtinib combination. Effect of combinatorial treatment with 17-AAG and lestaurtinib on cell
viability (A) and cisplatin sensitivity (B). A549°R cells were treated with 17-AAG (100 nM) and
lestaurtinib (100 nM) in the presence of sublethal dose of cisplatin (A549°R: 2 ng/ml) for cell
viability and increasing concentrations of cisplatin for ICso for 48 h. Cell viability and cisplatin
ICso were assessed by trypan blue exclusion and CellTiter-Glo assay, respectively. Data are mean
+ SD from three technical replicates and representative of three independent biological
experiments (A) and from three biological replicates (B). Statistical analysis was performed by
one-way ANOVA (***P<(.005; ****P<(0.0001).
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Supplemental Figure 10. Body weight, organ histology, and tumor Ki-67 staining of mice
treated with vehicle control, lestaurtinib, 17-AAG, and combination. Nude mice were treated
with cisplatin (5 mg/kg; intraperitoneal (i.p.) injection; twice a week), 17-AAG (50 mg/kg; i.p.
injection; 5 times a week), and lestaurtinib (20 mg/kg; subcutaneous injection; 5 times a week) for
29 days. (A) Body weights were measured every 5-6 days during treatment. (B) Hematoxylin and
eosin (H&E) stained tissue histology of representative mice are shown. Scale bars represent 50
um. (C) Effect of cisplatin treatment with the combination of 17-AAG and lestaurtinib on tumor
proliferation of lung cancer PDX mice. Proliferation of the PDX tumors was assessed by Ki-67
IHC staining. Scale bars represent 50 um. n=5 mice/group. p values were determined by two-tailed

Student’s # test (ns: not significant). Data shown are representative of five biological replicates for
(B) and (C).

10



17-AAG [nM] Lestaurtinib [nM] 17-AAG [nM] + lestaurtinib [nM]
Cytotoxicity Cytotoxicity Fraction Combination
Bess effect Dosd effect Dass affected (Fa) Index (CI)
25 0.06412 25 0.09275 125+125 0.08448 1.00785
50 0.10472 50 0.18320 25+25 0.14512 1.24977
100 0.44943 100 0.50224 50 + 50 0.55370 0.53017
KB-3-1¢R 200 0.59323 200 0.61555 *100 + 100 0.79001 0.44930
300 0.65571 300 0.67830 150 + 150 0.81391 0.59999
400 0.73818 400 0.72470 200 + 200 0.83597 0.71096
Dm:170.92, r=0.977 | Dm:149.59, r=0.979 Dm:114.10, r=0.976
25 0.08017 25 0.06475 125+125 0.05225 1.79686
50 0.30879 50 0.16201 25+25 0.11486 1.77409
100 0.43312 100 0.56839 50 + 50 0.46330 0.74790
A549°sR 200 0.58744 200 0.60056 *100 + 100 0.79268 0.44298
300 0.66111 300 0.66574 150 + 150 0.81730 0.58462
400 0.75193 400 0.71908 200 + 200 0.82872 0.73116
Dm:146.65, r=0.975 | Dm:155.25, =0.955 Dm: 127.90, r=0.981
50 0.09329 50 0.07989 25+25 0.05727 1.31982
100 0.19537 100 0.19679 50 + 50 0.16861 1.16717
200 0.38055 200 0.42671 100 + 100 0.44136 0.93085
A2780°R 300 0.57814 300 0.59962 150 + 150 0.63762 0.81304
400 0.64046 400 0.65788 *200 + 200 0.74698 0.76447
500 0.72794 500 0.75133 250 + 250 0.78434 0.83014
Dm:258.92, r=0.997 | Dm:245.31, r=0.999 Dm:230.75, r=0.999
25 0.07326 50 0.07259 125+25 0.09881 0.79795
50 0.17736 100 0.19370 25+ 50 0.18646 0.96851
100 0.37086 200 0.33997 50 + 100 0.47526 0.76451
PCI-15A %R 150 0.56936 300 0.51134 *75+ 150 0.67642 0.65164
200 0.65689 400 0.58817 100 + 200 0.69674 0.81515
250 0.71874 500 0.69812 125 + 250 0.73638 0.89299
Dm: 133.05, r=0.999 | Dm:294.81, r=0.997 Dm: 169.07, r=0.989

Supplemental Table. 1. Synergistic combination of 17-AAG and lestaurtinib. Dm: Median
effect dose. Blue: Combination that resulted in synergism. *Combination providing the lowest CI
value in each cell line.
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