Supplemental Acknowledgements

Susan Buchbinder, Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco; Edwin DeJesus, Orlando Immunology Center, Florida; Ian Frank, School of Medicine, University of Pennsylvania, Philadelphia; Spyros Kalams, Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee; Michael C. Keefer, University of Rochester Medical Center, Rochester, New York; Mark J. Mulligan, New York University Langone Vaccine Center; Richard Novak, Division of Infectious Diseases, University of Illinois at Chicago; Beryl Koblin, Mailman School of Public Health, Columbia University, New York; Stephen Brown, AIDS Research Alliance, Los Angeles; Thomas B. Campbell, Division of Infectious Diseases,University of Colorado, Denver Colorado; Mamta K. Jain, UT Southwestern Medical Center, Dallas TX; Julie E. Ledgerwood, Clinical Trials Program NIAID/VRC, NIH, Bethesda MD; Kenneth H. Mayer, HIV Center for Clinical and Behavioral Studies, Columbia University, New York; Paul Goepfert, Alabama Vaccine Research Clinic, University of Alabama, Birmingham AL; Hana El-Sahly, Molecular Virology and Microbiology, Baylor College of Medicine, Houston TX; Benigno Rodriguez, Division of Infectious Diseases \& HIV Medicine, Case Western Reserve University, Cleveland OH; Lindsey R. Baden, Division of Infectious Diseases, Brigham and Women's Hospital, Boston MA; Donald M. Poretz, Clinical Alliance for Research and Education Infectious Disease, Annandale VA; Judith Aberg, Judith Aberg, Infectious Disease, Icahn School of Medicine at Mount Sinai, New York.

SOM Figure. 1 Distinct response rates and magnitude of antibody FcyRIla and FcyRIIIa binding to gp140, gp120 and V1V2 proteins. Antibody FcyRIla (A, C, E) and FcyRIIla (B, D, F) binding to an array of envelope glycoprotein gp140 and V1V2 proteins, gp41, gp120, V3 and p24 Gag proteins. Positivity was defined as exceeding the $95^{\text {th }}$ percentile of baseline, MFI>100, and participant-specific three-fold increase from baseline.

SOM Figure 2. IgG3 response magnitude and rate. Boxplots of MFI are displayed for antigens including vaccine matched gp140s, suptype consensus gp140s, Consensus gp140 and gp120 (A), as well as V1V2 conformational and sequence motifs, gp41, and p24 Gag (B). The mid-line of the box denotes the median and ends of the box denote the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles, with whiskers extending to the most extreme data points. Positivity was defined as exceeding the $95^{\text {th }}$ percentile of baseline, MFI>100, and participant-specific three-fold increase from baseline.

SOM Figure 3. Sieve signatures based on distances of breakthrough viruses to Con \mathbf{S} gp140 and B Con gp140. Boxplots of hamming distances of mindist sequences to ConS gp 140 (A,C,E) or B.con.env03 gp140 (B, D,F) by treatment group for three sets of Env-gp120 sites: (A,B) all Env-gp120 sites that could be aligned with confidence ($\mathrm{n}=432$); (C,D) the 93 CD4bs antibody contact sites; and (E,F) 54 sites corresponding to the 4 k -mers overlapping the CD4bs where significant sieve effects were found (4). The mid-line of the box denotes the median and the ends of the box denote the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles. The whiskers that extend from the top and bottom of the box extend to the most extreme data points that are no more than 1.5 times the interquartile range or if no value meets this criterion, to the data extremes. The dashed horizontal lines show hamming distances of the subtype B vaccine strain to the gp140 antigen for the specified Env-gp120 site set. P-value reports the result of a 2 -sided Wilcoxon Test for a difference in distribution of the distances by treatment group.

A

C

B

D

F

SOM Figure 2

SOM Table 1A. FcyRIla (H131) Antigen Specific Response Rates

Antigen	Treatment Arm	Response Rate	95% CI
A1.con.env 03 gp140CF	Vaccine	$113 / 146=77.4 \%$	$(70.0 \%, 83.4 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
AE.A244 V1V2 Tags	Vaccine	$30 / 147=20.4 \%$	$(14.7 \%, 27.6 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
B.MN V3 gp70	Vaccine	$14 / 148=9.5 \%$	$(5.7 \%, 15.3 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
B.con.env03 gp140 CF	Vaccine	$130 / 149=87.2 \%$	$(80.9 \%, 91.7 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
C.1086 V2 tags	Vaccine	$0 / 150=0.0 \%$	$(0.0 \%, 2.5 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
C.1086C V1V2 Tags	Vaccine	$37 / 149=24.8 \%$	$(18.6 \%, 32.3 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
C.con.env03 gp140 CF	Vaccine	$110 / 145=75.9 \%$	$(68.3 \%, 82.1 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
Con 6 gp120/B	Vaccine	$27 / 149=18.1 \%$	$(12.8 \%, 25.1 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
Con S gp140 CFI	Vaccine	$147 / 149=98.7 \%$	$(95.2 \%, 99.6 \%)$
VRC A gp140	Vaccine	$147 / 150=98.0 \%$	$(94.3 \%, 99.3 \%)$
VRC B gp140	Vaccine	$145 / 148=98.0 \%$	$(94.2 \%, 99.3 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$	
	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$	

Antigen	Treatment Arm	Response Rate	95\% CI
VRC C_gp140	Vaccine	146/150 = 97.3\%	(93.3\%, 99.0\%)
	Placebo	$0 / 39=0.0 \%$	(0.0\%, 9.0\%)
$\begin{aligned} & \text { VRC_A } \\ & \text { gp70V1V2 } \end{aligned}$	Vaccine	37/139 = 26.6\%	(20.0\%, 34.5\%)
	Placebo	0/37 = 0.0\%	(0.0\%, 9.4\%)
gp41	Vaccine	133/143 = 93.0\%	(87.6\%, 96.2\%)
	Placebo	0/37 = 0.0\%	(0.0\%, 9.4\%)
$\begin{gathered} \text { gp70_B. } \\ \text { CaseA2 } \\ \text { V1V2/169K } \end{gathered}$	Vaccine	$45 / 142=31.7 \%$	(24.6\%, 39.7\%)
	Placebo	$0 / 39=0.0 \%$	(0.0\%, 9.0\%)
gp70_B. CaseA V1V2	Vaccine	29/145 $=20.0 \%$	(14.3\%, 27.2\%)
	Placebo	$0 / 39=0.0 \%$	(0.0\%, 9.0\%)
$\begin{gathered} \text { gp70_C. } 1086 \\ \text { V1V2 } \end{gathered}$	Vaccine	24/142 = 16.9\%	(11.6\%, 23.9\%)
	Placebo	$0 / 39=0.0 \%$	(0.0\%, 9.0\%)
p24 Gag	Vaccine	60/147 = 40.8\%	(33.2\%, 48.9\%)
	Placebo	$0 / 39=0.0 \%$	(0.0\%, 9.0\%)

SOM Table 1B. FcyRIIla (F158) Antigen Specific Response Rates

Antigen	Treatment Arm	Response Rate	$\mathbf{9 5 \% ~ C I}$
A1.con.env0 3 gp140CF	Vaccine	$89 / 149=59.7 \%$	$(51.7 \%, 67.3 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
AE.A244 V1V2 Tags	Vaccine	$16 / 150=10.7 \%$	$(6.7 \%, 16.6 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
B.MN V3 gp70	Vaccine	$6 / 150=4.0 \%$	$(1.8 \%, 8.5 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
B.con.env03 140 CF	Vaccine	$104 / 149=69.8 \%$	$(62.0 \%, 76.6 \%)$

	Placebo	$0 / 39=0.0 \%$	(0.0\%, 9.0\%)
C. 1086 V2 tags	Vaccine	0/150 $=0.0 \%$	(0.0\%, 2.5\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
C.1086C V1V2 Tags	Vaccine	25/149 $=16.8 \%$	(11.6\%, 23.6\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
$\begin{aligned} & \text { C.con.env03 } \\ & \text { gp140CF } \end{aligned}$	Vaccine	73/141 = 51.8\%	(43.6\%, 59.9\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
Con 6 gp120	Vaccine	12/149 = 8.1\%	(4.7\%, 13.5\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
Con S gp140 CFI	Vaccine	144/150 = 96.0\%	(91.5\%, 98.2\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
VRC A gp140	Vaccine	146/150 = 97.3\%	(93.3\%, 99.0\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
VRC B gp140	Vaccine	132/140 = 94.3\%	(89.1\%, 97.1\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
VRC C gp140	Vaccine	122/140 = 87.1\%	(80.6\%, 91.7\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
$\begin{aligned} & \text { VRC_A } \\ & \text { gp70 V1V2 } \end{aligned}$	Vaccine	$34 / 150=22.7 \%$	(16.7\%, 30.0\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
gp41	Vaccine	134/150 = 89.3\%	(83.4\%, 93.3\%)
	Placebo	$0 / 39=0.0 \%$	(0.0\%, 9.0\%)
$\begin{gathered} \text { gp70_B. } \\ \text { CaseA2 } \\ \text { V1V2/169K } \end{gathered}$	Vaccine	24/149 = 16.1\%	(11.1\%, 22.8\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)
$\begin{gathered} \text { gp70_B. } \\ \text { CaseAV1V2 } \end{gathered}$	Vaccine	15/149 = 10.1\%	(6.2\%, 15.9\%)
	Placebo	0/ $39=0.0 \%$	(0.0\%, 9.0\%)

gp70_C.1086 $\overline{\mathrm{V} 1 / \mathrm{V} 2}$	Vaccine	$19 / 149=12.8 \%$	$(8.3 \%, 19.1 \%)$
	Placebo	$0 / 39=0.0 \%$	$(0.0 \%, 9.0 \%)$
p24 Gag	Vaccine	$29 / 143=20.3 \%$	$(14.5 \%, 27.6 \%)$
	Placebo	$0 / 37=0.0 \%$	$(0.0 \%, 9.4 \%)$

SOM Table 2. Weights of summary of immune response markers when calculating the first (PC1) and second (PC2) principal component, otherwise known as loadings. The markers that most substantially contribute to each principal component are in bold.

	PC1	PC2
Cd8.env.poly	0.224	$\mathbf{0 . 5 6 6}$
IgG env	$\mathbf{0 . 4 5 0}$	-0.006
IgG V2	0.301	-0.040
IgG gp41	$\mathbf{0 . 4 1 1}$	-0.083
ADCP1	$\mathbf{0 . 4 0 1}$	0.038
FcyRIla	$\mathbf{0 . 4 2 8}$	-0.056
IgA env	0.173	$\mathbf{- 0 . 7 9 2}$
IgG3 Env	$\mathbf{0 . 3 3 7}$	$\mathbf{0 . 2 0 0}$

SOM Table 3. Weights of individual immune response markers when calculating the first (PC1) and second (PC2) principal component.

	Target	PC1	PC2
ADCP	Phagocytosis of Con S gp140	0.177	0.127
CD8	Polyfunctionality	0.090	0.004
$\lg A$	AE A244 V1V2 Tags	0.009	-0.014
IgG	ABDM HVTN505 gp41 ID	0.096	-0.011
	AE A244 V1V2 Tags	0.082	-0.035
	Bio V3 B	0.128	-0.051
	C HVTN505 gp41 ID	0.106	-0.032
	C Con gp140	0.180	-0.118
	Con S gp140	0.185	-0.175
	gp41	0.177	-0.098
	VRC A gp140	0.195	-0.184
	VRC B gp140	0.164	-0.162
	VRC C gp140	0.197	-0.151
IgG3	A1 Con gp140	0.165	0.275
	B Con gp140	0.168	0.316
	C Con gp140	0.158	0.329
	Con 6 gp140	0.083	0.141
	Con S gp140	0.160	0.334
	gp41	0.174	0.190
	VRC A gp140	0.162	0.259
	VRC B gp140	0.160	0.300
	VRC C gp140	0.139	0.323
FcyRIla	A1 Con gp140	0.202	-0.116
	B Con gp140	0.212	-0.094
	C Con gp140	0.207	-0.074
	gp41	0.189	-0.084
	p24	0.041	-0.028
	VRC_A_gp70V1V2_avi	0.101	-0.005
	VRC A gp140	0.187	-0.168
	VRC B gp140	0.202	-0.157
	VRC C gp140	0.203	-0.123
FcyRIIIa	A1 Con gp140	0.193	-0.076
	B Con gp140	0.206	-0.044
	C Con gp140	0.194	-0.025
	Con S gp140	0.214	-0.065
	p24	0.039	-0.028
	VRCBgp140	0.209	-0.108

Statistical Analysis Plan for Superlearner CoR Analysis of Month 7 Markers in HVTN 505

April 19, 2019

Analysis Notes Specific to Superlearner Supervised Learning

- Keep for CoR analysis individual variables that are matched to vaccine antigens. For vaccinemismatched biomarkers, if there is only one vaccine-mismatched variable in a set, use it, otherwise use the scores PC1 and/or mdw. If PC1 and mdw have Spearman rank r>0.9, only keep PC1. The HVTN505: var.super object contains this set of variables. For every variable in this list, there is also a dichotomized version, whose name has a suffix _bin at the end.
- Pre-scale each variable to have mean 0 and sd 1 in the vaccine arm (both quantitative and binary variables)
- Given there are only 25 total HIV infected cases, only allow learning algorithms to have a maximum of 4 immune response variables. Also use leave-one-out cross-validation and negative log-likelihood loss, which some studies have shown tend to perform well in small sample size settings.
- Include learning algorithms with and without lasso pre-screening (with default tuning parameter selection), and perhaps with and without logistic regression univariate 2 -sided p-value screening (at levels p < 0.01, < 0.05, < 0.10)
- Another screen to use with Superlearner would be to only include markers with a certain 'dynamic range,' knowing that biologically-relevant inter-vaccinee variability majorly impacts power. Exclude variables such that the $20^{\text {th }}$ percentile of the readout equals the $80^{\text {th }}$ percentile of the readout in vaccine recipients. In addition, for each variable in a set (i.e., vaccine-matched, PC1, MDWS), compute the 'dynamic range' score as the standard deviation of the marker in vaccinees divided by the standard deviation of the marker in placebo recipients. One screen that is used only includes variables in the top half of dynamic range scores.
- Do high-correlation screening, not allowing any pair of immune response variables to have r > 0.9
- Include easy-to-interpret models in Superlearner and include models that study pairwise interactions of variables
- Run the Superlearner averaging over 10 random seeds
- The output may include CV-AUC forest plots similar to Ted Westling's tutorial (http://faculty.washington.edu/peterg/SanofiPasteurCorrelatesRTraining.2018.html) and Magaret et al. 2019. An important aspect of the results to communicate is the quality of classification accuracy obtained via different variable sets. Therefore, the forest plots include best models based on different combinations of assays, assuming there are too many (assay x antigen) combinations to adequately display. This has important upstream effects of how to set up the library of learners. Looking at Ted's example, there are models presented for " $\lg A, \lg G$, Both, Neither." Conceptually, we want the same thing, but there are more assay categories. Note that models with $\operatorname{Ig} G$ and $\lg A$ also include $\log \lg A / \lg G$ ratio variables. The classes to use (with legend labels) are as follows:

1. None (No Month 7 markers - only the baseline variables in every model - BMI, age, risk score)
2. IgG+lgA (considering all antigens)
3. $\lg G 3$ (IgG subclass associated with functional responses)
4. T cells (ICS CD4 and CD8 T cells) (considering all antigens)
5. Fx Ab (Functional Ab variables "phago", "fcrR2a", "fcrR3a", "Tier 1 nAb") (considering all antigens)
6. $1+2+3(\lg G+\lg G 3+\lg A)$
7. $1+2+4$ (IgG+IgA+T cells)
8. $1+2+3+4(\operatorname{lgG}+\operatorname{lgG} 3+\lg A+T$ cells $)$
9. $1+2+3+5(\lg G+\lg G 3+\lg A+F x A b)$
10. $1+4+5$ (T cells +Fx Ab)
11. All $(\operatorname{lgG}+\operatorname{lgG} 3+\lg A+T$ cells $+F x$ Ab)

Technically, only phago is a purely functional readout. We consider FcR a function but it is still a biophysical measurement, IgG3 is binding but is associated with function in a number of studies in the literature.

In terms of display, if results are shown for each algorithm type and screen, then there would be too many results to display. Only the SL and the top few performing models will be shown for each.

- Apply the usual nested cross-validation to be able to estimate cross-validated risk to appropriately characterize the classification accuracy (free of overfitting) of the Superlearner model and the other models.
- The output may include a plot of the distribution of estimated risk of HIV-1 infection (fitted values), and overlay on the plot an estimate of the overall HIV-1 infection risk of placebo recipients between Month 7 and 24.

