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Immunotherapy has transformed the treatment landscape for a wide range of human cancers. Immune checkpoint
inhibitors (ICIs), monoclonal antibodies that block the immune-regulatory “checkpoint” receptors CTLA-4, PD-1, or its
ligand PD-L1, can produce durable responses in some patients. However, coupled with their success, these treatments
commonly evoke a wide range of immune-related adverse events (irAEs) that can affect any organ system and can be
treatment-limiting and life-threatening, such as diabetic ketoacidosis, which appears to be more frequent than initially
described. The majority of irAEs from checkpoint blockade involve either barrier tissues (e.g., gastrointestinal mucosa or
skin) or endocrine organs, although any organ system can be affected. Often, irAEs resemble spontaneous autoimmune
diseases, such as inflammatory bowel disease, autoimmune thyroid disease, type 1 diabetes mellitus (T1D), and
autoimmune pancreatitis. Yet whether similar molecular or pathologic mechanisms underlie these apparent autoimmune
adverse events and classical autoimmune diseases is presently unknown. Interestingly, evidence links HLA alleles
associated with high risk for autoimmune disease with ICI-induced T1D and colitis. Understanding the genetic risks and
immunologic mechanisms driving ICI-mediated inflammatory toxicities may not only identify therapeutic targets useful for
managing irAEs, but may also provide new insights into the pathoetiology and treatment of autoimmune diseases.
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Introduction
The 2018 Nobel Prize in Physiology or Medicine was awarded to 
James P. Allison and Tasuku Honjo for their work on the role of 
inhibitory immune “checkpoint” receptors in the regulation of 
antitumor immunity. Their work and the work of others in the field 
laid the foundation for a revolution in cancer treatment, unleash-
ing the immune system to attack cancer. Allison’s early intuition 
was correct: “What we needed to do was to release the brakes of 
the immune system to fight cancer.” Allison demonstrated that 
cytotoxic T lymphocyte antigen 4 (CTLA-4), a protein expressed by 
activated T cells, acts as an important check on immune activation, 
in particular inhibiting the response to cancer. Subsequent research 
has focused on other immune checkpoints, most prominently the 
receptor programmed cell death protein 1 (PD-1) and its ligand 
(PD-L1) (1–3). Immune checkpoint inhibitors (ICIs) targeting these 
proteins are now approved by the US FDA to treat a variety of types 
of cancers, such as melanoma, lung, kidney, bladder, gastric, and 
liver tumors. Physiologically, CTLA-4, PD-1, and PD-L1 play critical 
roles in peripheral tolerance, as clearly demonstrated both in ani-
mal models and in patients with haploinsufficiency in CTLA-4. Not 
surprisingly, pharmacologic disruption of these checkpoints leads 
to a wide range of inflammatory toxicities, collectively referred to as 
immune-related adverse events (irAEs) (ref. 4 and Table 1). These 
toxicities can affect any organ system of the body, although most 

occur either at barrier organs (e.g., the gastrointestinal or pulmo-
nary mucosa) or in endocrine glands (4, 5). Many of these irAEs are 
mild, yet they can carry considerable morbidity, and in rare cases 
these toxicities can be fatal, particularly when recognized late (6).

Elucidating the mechanisms underlying irAEs caused by 
CTLA-4 and PD-1 pathway inhibition may provide essential clues 
to understanding the pathogenesis of autoimmune diseases, 
potentially leading to the identification of novel treatments. In 
support of this concept, CTLA-4 haploinsufficiency, a rare genetic 
disorder, severely impairs the normal regulation of the immune 
system, resulting in inflammatory intestinal disease, multilineage 
autoimmune cytopenias, and respiratory infections (7). Further-
more, conditional deletion of Ctla-4 on regulatory T cells (Tregs) 
during adulthood leads to resistance to experimental autoimmune 
encephalomyelitis, the mouse model of multiple sclerosis (8); this 
suggests that peripheral Treg expansion and/or increased Treg 
activation as a result of CTLA-4 blockade could prevent auto-
immune disease. Finally, the CTLA-4 splice variant li-CTLA-4, 
a ligand-independent isoform, reduces diabetes incidence and 
insulitis in nonobese diabetic (NOD) mice, when expressed at 
physiologic levels in CTLA-4–sufficient animals (9). li-CTLA-4 
is expressed in naive and activated T cells and can modify T cell 
signaling despite its lack of a B7 binding domain. Here, we will 
explore how these and other mechanistic insights into irAEs pro-
vide the groundwork for understanding how to limit the toxicity of 
immunotherapy as well as treat autoimmune disease.

Mechanisms of CTLA-4 and PD-1/PD-L1 signaling
CTLA-4 plays a critical role in the chain of events leading to T cell acti-
vation and regulation. CTLA-4 upregulation occurs following T cell 
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that are recruited into the immunologic synapse (2). The degree 
of CTLA-4 recruitment to the immunologic synapse correlates 
with TCR signal strength, and it is stabilized by B7 ligand binding 
and outcompetes CD28 (14). Through this mechanism, CTLA-4 
dampens positive costimulation by CD28 and in turn decreases 
CD28 downstream signaling that is primarily mediated by PI3K 
and AKT (15, 16). CTLA-4 regulation of T cell activity takes place 
not only in lymphoid organs but also in peripheral tissues, given 
that B7 ligands are expressed (to a certain extent) by antigen- 
presenting cells within tissues, including tumors, and can also be 
expressed by activated T cells.

The primary biological function of the PD-1/PD-L1 pathway is 
to maintain peripheral tolerance in the setting of chronic inflam-
mation. PD-1, like CTLA-4, is expressed after T cell activation, but 
its expression increases upon repeated stimulation (17). PD-1 has 
also been found on several other cell types, including B cells (17). 
PD-L1 is upregulated by inflammatory cytokines such as IFN-γ on 
a wide variety of tissues, including many tumors (18–20). A second 
ligand for PD-1, PD-L2, is expressed primarily on cells of hema-
tologic origin. PD-1 and its ligand PD-L1 exhibit a critical role in 
tumor progression and appear to play a central role in mediating 
tumor immune escape. PD-1 regulates T cell activation through 
interaction with PD-L1 and PD-L2 (Figure 1 and Figure 2A) (18–
20). Upon engagement with PD-L1 and PD-L2, PD-1 delivers a 
negative costimulatory signal through the tyrosine phosphatase 
SHP2, leading to diminished activation. The recruitment of SHP2 
directly attenuates TCR signaling through dephosphorylation of 
proximal signaling elements (Figure 1). Recently it has been shown 
that CD28 is an important target for PD-1–induced attenuation of 
T cell signaling (21).

Structure of anti–CTLA-4 and anti–PD-1 
antibodies
At present, ipilimumab is the only approved antibody targeting 
CTLA-4, while three antibodies against PD-1 (nivolumab, pem-

receptor (TCR) engagement (signal 1 of T cell activation) and reduces 
TCR signaling by competing with the costimulatory molecule CD28 
for the B7 ligands B7-1 (CD80) and B7-2 (CD86), for which CTLA-4 
has higher avidity and affinity (Figure 1 and Figure 2A) (10–12). B7-1 
and B7-2 binding leads to positive costimulatory signals through 
CD28, and competitive inhibition of both molecules by CTLA-4 is 
essential to produce a negative effect on T cell activation (13).

The upregulation of CTLA-4 is not the only mechanism regu-
lating T cell activation. CTLA-4 is present in intracellular vesicles 

Table 1. Immune-related adverse events from cancer immunotherapy

Anti–PD-(L)1 Anti–CTLA-4 Anti–PD-(L)1 + anti–CTLA-4
All grades Grade 3–4 All grades Grade 3–4 All grades Grade 3–4

All irAEs 74% 14% 89% 34% 90% 55%
Fatigue 21% 1% 25% 2% 36% 4%
Pruritus 15% <1% 25% 1% 34% 2%
Rash 10% <1% 23% 1% 41% 5%
Diarrhea 11% 1% 36% 8% 44% 10%
Nausea 12% <1% 19% 1% 25% 2%
Pneumonitis 4% 1% 1% 1% 7% 1%
Transaminase elevation 5% 1% 5% 2% 19% 9%
Hypophysitis 1% <1% 4% 2%
Hypothyroidism 8% <1% 3% <1% 15% <1%
Adrenal insufficiency 1% <1% 1% <1% 4% 2%
Autoimmune diabetesA <1% <1% <1%
Neuropathy 1% <1% <1% <1% <1% <1%
Arthralgia/arthritis 8% <1% 5% <1% 11% <1%
Myocarditis <1% 3% 2%

Based on data reported in refs. 71, 117–119. AIn one study autoimmune diabetes and DKA appear to be much more frequent (56).

 

Figure 1. Schematic representation of CTLA-4 and PD-1 blockade of T 
cell activation and attenuation. Molecular interactions and downstream 
signaling as a result of ligation of CTLA-4 and PD-1 with their correspond-
ing ligands.
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dependent cellular phagocytosis (ADCP), and complement- 
dependent cytotoxicity (CDC) (23, 24).

Ipilimumab is a human IgG1 monoclonal antibody (mAb) that 
targets CTLA-4. Ipilimumab induces ADCC, ADCP, and CDC 
in vitro, and in turn elicits both humoral and cellular responses. 
IgG1-induced ADCC can be enhanced by defucosylation of the Fc 
region’s glycan sequences (IgG1fut) (Figure 2B). The IgG4 immu-
notherapeutic antibodies nivolumab and pembrolizumab are 
both IgG4S228P. This variant of IgG4, an engineered isotype with a  

brolizumab, and cemiplimab) have been approved for various 
indications, as have three antibodies against PD-L1 (avelumab, 
durvalumab, and atezolizumab). The success of ICI antibod-
ies in cancer immunotherapy has substantially improved the 
mechanistic understanding of the regulation of T cell responses, 
although ICIs targeting negative regulatory molecules are able 
to elicit durable immune responses only in a subgroup of cancer 
patients (22). ICIs can cause a variety of cell toxicities, includ-
ing antibody-dependent cellular cytotoxicity (ADCC), antibody- 

Figure 2. Immune checkpoint inhibitor mechanisms and design. (A) Mechanisms by which T cell activation by CTLA-4 and PD-1 blockade therapy may 
cause pituitary and pancreatic β cell damage. CTLA-4 is expressed by normal pituitary cells. Following CTLA-4 blockade (i.e., ipilimumab), the classic 
complement pathway is activated, resulting in severe inflammation (hypophysitis) and destruction of pituitary cells (23). T cell activation by PD-1 blockade 
(i.e., nivolumab) can cause pancreatic β cell destruction. Interestingly, PD-L1 is specifically upregulated on pancreatic β cells of patients with T1D, and 
it is induced by both type I and II interferons via IRF1 (74). Several additional mechanisms are thought to contribute to the efficacy of anti–CTLA-4 and 
anti–PD-1 therapy (right). These include antibody-mediated depletion of Tregs, enhancement of T cell–positive costimulation within the tumor micro-
environment, blockade of host-derived PD-L1 signals from nontumor cells in the microenvironment, and blockade of interactions between PD-L1 and B7-1 
(2). Some of these additional mechanisms theoretically play a role in the development of specific organ inflammatory toxicities related to anti–CTLA-4 
and anti–PD-1 immunotherapy. (B) Therapeutic mAbs targeting CTLA-4, PD-1, or PD-L1. Left: IgG1 is the isotype of the majority of approved mAb immuno-
therapies, such as anti–CTLA-4 or anti-CD20 (rituximab). This mAb drives potent antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent 
cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), engaging both cellular and humoral immune responses. Center: IgG1-induced 
ADCC can be increased by defucosylation of the glycan sequences (IgG1fut). This modification, obtained using a specific CHO cell line, enhances mAb 
binding to FcγRIIIa/CD16. The approved anti-CD20 obinutuzumab is engineered with reduced fucose content. Right: IgG4S228P is an engineered isotype of 
IgG4 that displays reduced ADCC and ADCP and no CDC. A serine-to-proline substitution at position 228 (S228P) in the hinge region prevents Fab arm 
exchanges that frequently occur between IgG4 molecules. IgG4S228P mAbs, such as anti–PD-1 nivolumab, are mainly blocking agents.
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CTLA-4 and PD-1 have some role in compensating for each oth-
er’s absence in the setting of single pathway inhibition, though 
this degree of synergy is far less than is seen for some other 
organs, such as the liver (5, 44, 45).

Although CTLA-4 clearly plays a more important role in gut 
homeostasis than does PD-1/PD-L1, the opposite appears to be 
true in the lungs. Pneumonitis is more common in patients treated  
with antibodies that block PD-1 or PD-L1 than in patients treated 
with ipilimumab (29, 31, 36–41, 46). Differences in the patient pop-
ulations treated with these drugs likely account for some, though 
not all, of this difference. PD-1/PD-L1 blockade is approved for 
the treatment of lung cancer, which has a higher incidence of 
pneumonitis than other malignancies, while ipilimumab is not. 
Whether this distinction relates to important differences in the 
immune inflammatory mechanisms or to the antigenic targets in 
these two tissues remains to be determined.

Inciting events and antigenic targets
One of the most valuable aspects of studying the mechanisms 
driving the inflammatory toxicities of ICIs is that the timing of the 
immune perturbation is well defined. However, presently we have 
a paucity of data on disease-associated biomarkers following ICI 
treatment, and still have a rudimentary understanding of the asso-
ciation between irAEs and cancer outcome. Skin reactions appear 
to be more frequent among patients treated with ICIs who have 
preexisting rheumatoid factor, whereas thyroid dysfunction seems 
to be more frequent among patients with preexisting anti-thyroid 
autoantibodies (47, 48). Hence, organ-specific autoantibodies 
developing under ICI treatment could be potential biomarkers 
of ICI toxicity and efficacy, though further data will be required 
before we can determine whether this is the case.

Patients have a clear start date on therapy, may have biolog-
ical samples available before treatment, and often have samples 
during treatment but before emergence of clinical toxicity. This 
is in direct distinction to patients with spontaneous autoimmune 
disease, for whom the initial immune perturbation is unknown 
and may have occurred years or decades before the onset of clini-
cally apparent disease (5). Without a clearly defined disease dura-
tion, determining which disease-associated immune changes are 
driving inflammation and which are consequences of the underly-
ing pathology can be extremely difficult.

ICI-related autoimmune/inflammatory 
responses
Despite the theoretical advantages of studying irAEs, at present 
too little is known about the underlying immune pathogenesis of 
these toxicities to draw mechanistic conclusions about the inciting 
events. The rapid onset of colitis after CTLA-4 blockade suggests 
that cells capable of driving colonic inflammation may be present 
at baseline in many individuals, or at the least that triggers are 
common and commonly encountered. In contrast, the delayed 
onset of PD-1 blockade–associated colitis suggests that trig-
gers beyond PD-1 inhibition may play an important role in most 
patients (5, 32, 33, 49). Colonic infections, alterations in the micro-
biome, dietary changes, and toxic injuries are all potential factors 
that could break tolerance and precipitate colitis in patients who 
initially maintained it in the setting of PD-1 blockade.

serine-to-proline substitution at position 228 (S228P) in the hinge 
region, prevents Fab arm exchanges that otherwise frequently 
occur between IgG4 molecules. In in vitro assays, IgG4 shows 
reduced ADCC and ADCP and no CDC (25). Thus, these IgG4S228P 
mAbs mainly block the activation of PD-1 (Figure 2B). Glycosyla-
tion of the Fc region of IgGs has major implications for the safety 
and clinical efficacy of therapeutic antibodies. For example, the 
enhancement of ADCC is attributed to the increased affinity of 
non-fucosylated IgG for FcγRIIIa expressed on natural killer (NK) 
cells (26–28).

CTLA-4 and PD-1 pathways contribute to barrier 
tolerance
Inflammation at barrier organs (skin, pulmonary epithelium, and 
gastrointestinal mucosa) is a common toxicity in patients treated 
with antibodies against CTLA-4 or PD-1/PD-L1 (5). However, 
differences in the frequency and severity of this inflammation 
indicate important differences in the regulatory roles of CTLA-4 
and PD-1/PD-L1 (5). The majority of irAEs caused by antibodies 
against CTLA-4 or PD-1/PD-L1 are mild to moderate in severi-
ty, such as autoimmune thyroid disease. More rarely these irAEs 
are serious or occasionally life-threatening, such as severe colitis, 
pneumonitis, encephalitis, toxic epidermal necrolysis, myocar-
ditis, autoimmune type 1 diabetes (T1D) presenting in diabetic 
ketoacidosis (DKA), and primary adrenal insufficiency caused by 
autoimmune adrenalitis (6).

CTLA-4 has a critical role for maintaining immune homeo-
stasis in the gut. Blockade of CTLA-4 with ipilimumab induces 
inflammation in the colon (colitis) and/or small intestine (enteri-
tis) in a high frequency of patients. Approximately 10% of patients 
treated with ipilimumab will develop severe, even life-threatening 
colitis, often within the first two or three cycles of treatment (5, 
29–35). The frequency and severity of colitis is dose-dependent, 
suggesting that we have not yet seen the full effect of complete 
CTLA-4 inhibition. Once initiated, colitis can rapidly progress 
over a period of days if left untreated, causing severe dehydration 
and risking colonic perforation (5, 29–31, 34, 35).

In contrast, while PD-1 and PD-L1 blockade produces mild 
colonic inflammation at a reasonably high frequency, inflamma-
tion that escalates to the point of requiring intervention is uncom-
mon. Severe enterocolitis occurs in fewer than 2% of patients in 
most clinical trials (5, 32, 33, 35–43). The difference in frequen-
cy and severity demonstrates that gastrointestinal mucosal tol-
erance is dominated by CTLA-4, with PD-1 playing a relatively 
minor role (5, 32, 33, 36–43). In addition, many patients with mild 
PD-1–induced colitis can have stable or slowly escalating symp-
toms over a period of weeks or months, even with continued 
immunotherapy treatment (5). This period of stable, smoldering 
inflammation suggests that other regulatory mechanisms com-
pensate to prevent complete loss of mucosal tolerance in these 
patients, a clear distinction from the rapid evolution of colitis 
driven by CTLA-4 blockade (5).

Not surprisingly, the homeostatic roles for PD-1 and CTLA-
4 do not precisely overlap, as blocking both pathways induces 
more frequent and more severe enterocolitis than is seen with 
blockade of either pathway alone (5, 44). The effect is also 
somewhat synergistic (more than additive), an indication that 
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is initiated and the symptoms have resolved, patients should con-
tinue maintenance therapy (54, 64, 65). This recommendation 
is also clearly indicated in recent guidelines for the management 
of endocrine complications of ICIs (66). The mechanism of ICI- 
induced autoimmune adrenalitis is unknown.

In an original report of five subjects with diabetes mellitus, 
aged 55–83 years, their presentation ranged from symptoms of 
hyperglycemia, such as polyuria, to DKA requiring treatment in 
the intensive care unit (67). Remarkably, a marked increase of 
ICI-related autoimmune diabetes was reported, with over 50% 
of cases reported in 2017. Overall, half of the patients with ICI- 
related diabetes presented in DKA (50.2%) (56). Although arche-
typal T1D develops years or even decades after the appearance of 
islet autoantibodies, autoimmune diabetes induced by ICIs pres-
ents weeks to months after initiation of ICI therapy. Islet auto-
antibodies are frequently present in these patients, though with 
a prevalence lower than in T1D, and their association with HLA-
DQ/DR alleles conferring T1D risk appears to be stronger than in 
T1D. In ICI-induced T1D, cytotoxic T lymphocytes responding to 
islet peptides have also been described (68).

Furthermore, there have been several reports describing 
rapid-onset as well as fulminant T1D, the latter usually character-
ized by rapid onset and absence of diabetes-related antibodies in 
patients treated with anti–PD-1/PD-L1 antibodies or, rarely, with 
ipilimumab (54, 69–73).

A recent study indicates that PD-L1 is specifically upreg-
ulated on pancreatic β cells from patients with T1D, and it is 
induced by both type I and II interferons via interferon regula-
tory factor 1 (IRF1) (74). This PD-L1 upregulation was correlated 
with the presence of CD8+ T cells within the islets. A provocative 
hypothesis is that β cells displaying high PD-L1 expression may 
resist T cell–mediated apoptosis over a longer period of time 
and persist despite sustained islet T cell responses, similarly to 
PD-L1–expressing cancer cells (Figure 2A) (75). Interestingly, in 
NOD mice, long-term-surviving β cells in the setting of ongoing 
immune responses express high levels of PD-L1, and blockade 
of PD-L1 precipitates rapid onset of fulminant diabetes (75). 
Stamatouli et al. described 27 patients with ICI-induced dia-
betes. This syndrome has similarities and differences compared 
with classic T1D (76). There was a predominance of HLA-DR4, 
which was present in 76% of patients, whereas other HLA alleles 
associated with high risk of spontaneous T1D were not overrep-
resented, including HLA-DR3, -DQ2, and -DQ8. Approximately 
40% of the patients described by Stamatouli et al. exhibited islet 
autoantibodies that are found in spontaneous T1D, a prevalence 
lower than that of islet autoantibodies found in spontaneous 
T1D (76). A possible explanation of the latter finding is that ICI- 
induced T cell and autoantibody responses may recognize as-yet 
unidentified islet autoantigen(s). In the Stamatouli et al. report, 
more detailed clinical information (serology and HLA-DQ  
and -DR haplotypes) should have been provided regarding a  
group of patients with T1D not treated with ICIs. Furthermore, 
in ICI-induced T1D, random glucagon levels were not reduced, 
suggesting that α cells were still functioning.

T1D was diagnosed in one patient who developed autoim-
mune syndrome type 2 (including Addison’s disease and hypoph-
ysitis) after treatment with atezolizumab (77). The HLA genotype 

The antigenic targets in checkpoint colitis are similarly unclear 
at present. Based on our current understanding of the mecha-
nism of action of CTLA-4 and PD-1/PD-L1 blockade, antigen- 
specific T cells are presumed to be the key orchestrators of colitis 
as they are in driving antitumor responses. Although in theory, self- 
proteins could be recognized in ICI-induced colitis, the microbial  
and dietary antigen diversity along the gastrointestinal mucosa pro-
vides a prolific source of non-self proteins that could be recognized 
as well, and these are the more plausible antigenic targets. Prelim-
inary evidence indicates difference in the baseline microbiomes 
of patients who develop colitis on ICIs compared with those who 
do not, and in animal models, histopathologic changes associated 
with CTLA-4 treatment are influenced by microbiota, with Bac-
teroides and Burkholderiales associated with preserved intestinal 
architecture and improved antitumor responses (50, 51). This does 
not directly implicate specific microbial organisms as the targets 
of T cell–mediated immunity, however, as these differences may 
reflect differences in dietary or other environmental exposures, or 
differences in baseline inflammatory states induced by microbial 
products. Further implicating the microbiome in ICI-colitis, fecal 
microbiota transplant has been reported to be effective in two 
patients with colitis refractory to standard treatment (52).

ICI-related autoimmune endocrinopathies
Autoimmune endocrinopathies, including T1D, hypopituitar-
ism, hypothyroidism, hypogonadism, and hypoadrenalism, have 
emerged as frequent and clinically meaningful adverse events 
(53, 54). The most common of the reported endocrinopathies 
with ipilimumab has been thyroid dysfunction (55).

In several studies and in large phase III clinical trials, thyroid 
dysfunction (hypothyroidism, hyperthyroidism, and thyroiditis) 
was reported in 6% to 20% of patients (55–57). Myxedema crisis 
has also been described (58). The majority of patients affected by 
ICI-induced thyroid dysfunction are asymptomatic, and conser-
vative therapy during the thyrotoxic phase of thyroiditis is usually 
sufficient. Anti–CTLA-4 and anti–PD-1 usually leads to permanent 
hypothyroidism after an average of 1 month following the thyro-
toxic phase of the disease and 3 months from initiation of immu-
notherapy, and lifelong thyroid hormone replacement is neces-
sary (54, 58). Interestingly, the risk for thyroid dysfunction may be  
related to the existence of preexisting autoantibodies (47, 48). 
Graves’ disease is a rare cause of immunotherapy-related hyperthy-
roidism generally following the use of ipilimumab. Graves’ ophthal-
mopathy may also occur (59, 60). High-dose steroids and antithy-
roid drugs are used successfully to treat this condition (54, 61).

Autoimmune hypophysitis is on the rise, particularly after ini-
tiation of ipilimumab treatment (53). An interesting mechanism 
has been proposed in which CTLA-4 is expressed by normal  
pituitary cells, and administration of an anti–CTLA-4 mAb acti-
vates classic complement pathway, resulting in destruction of 
pituitary cells (Figure 2A) (23, 53).

Primary adrenal insufficiency caused by autoimmune adrenal-
itis predominantly occurs in patients affected by melanoma treated 
with anti–PD-1 immunotherapy (62). The majority of these patients 
recovered clinically on hydrocortisone replacement therapy and 
on fludrocortisone if necessary (63). In ICI-induced autoimmune 
adrenalitis, once therapy with hydrocortisone and fludrocortisone 
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was DRB1*04 and DQB1*03 haplotype, typically associated with 
T1D, whereas islet cell antibodies were not detected. Other cases 
of polyendocrinopathies resulting from ICI treatment have been 
reported (65, 78). Interestingly, PD-1 inhibitors can induce wors-
ening of preexisting type 2 diabetes (69), and an increase in hemo-
globin A1c in nondiabetic patients (34).

Immune-related pancreatic exocrine insufficiency was 
described in a case series of patients treated with ICIs (79). Inter-
estingly, immune-related pancreatic exocrine insufficiency caused 
by pancreatitis was linked to pembrolizumab or nivolumab for 
metastatic melanoma, and a meta-analysis has shown that CTLA-
4 inhibitors alone as well as combination treatment of nivolumab 
and ipilimumab are associated with increased risk of amylase or 
lipase elevation (80, 81). Overall, these observations suggest an 
opportunity to identify those at highest risk of ICI-induced auto-
immune diseases, which may yield insights into spontaneous 
autoimmune disease, and improve our ability to treat these irAEs.

Restoration of immune homeostasis
For most irAEs, with the notable exception of the endocrine tox-
icities, corticosteroids are first-line treatments, including for ICI- 
induced colitis (5, 32, 33, 82, 83). In the majority of patients, corti-
costeroids are sufficient to resolve symptoms, although a substan-
tial fraction of patients will require further immune suppression 
(32, 33, 84). Because of its frequency and severity, treatment and 
restoration of immune homeostasis is best understood for ICI- 

induced colitis, though even for this irAE few mechanistic details are 
known. For patients with ICI-induced colitis who do not respond to 
corticosteroids, the TNF-α–blocking antibody infliximab is highly  
effective, implicating TNF-α in the molecular pathogenesis of 
ICI-induced colitis (5, 32–34, 82, 83, 85). The presumption is that 
other anti–TNF-α therapies would also be effective, but these drugs 
have not been evaluated directly. Most patients require one to three 
doses of infliximab to resolve colitis, underscoring the importance 
of TNF-α in ICI-induced colitis. Intriguingly, TNF-α may play a role 
in some cases of ICI-induced diabetes (86). A recent case report 
described a patient who simultaneously developed ICI-induced 
colitis and diabetes, and whose diabetes improved after treatment 
of the colitis with infliximab (86).

The antibody vedolizumab, which blocks the gut-homing 
integrin α4β7, has also shown efficacy as an alternative to inflix-
imab, or for patients who fail to respond to TNF-α blockade (87, 
88). This finding suggests that trafficking of new immune cells 
from the circulation into the gut is required to perpetuate the 
inflammatory response in ICI-induced colitis, a finding that is 
consistent with our understanding of colitis more generally. 
Additional therapies for refractory ICI-induced colitis have been 
reported, including immune suppression directed at T cells and 
borrowed from the transplant experience, such as mycopheno-
late mofetil and tacrolimus (5).

Recurrence is rare for most irAEs, including colitis, after 
resolution of the initial inflammation, and chronic inflam-

Figure 3. Neoantigens and dendritic cell and CD8+ T cell activation at the tumor site following checkpoint blockade immunotherapy. CD8+ T cells are 
the primary effectors of antitumor immune responses, though other immune cell types (i.e., CD4+ T cells) are also involved. Middle: Dendritic cells (DCs) 
are activated by neoantigens from the tumor. Dead and dying tumor cells release damage-associated molecular patterns (DAMPs; e.g., heat shock 
proteins, ATP, nucleic acids) that can also activate DCs. Left: The activated DCs travel to lymph nodes, whereby they present MHC class I–bound neo-
antigens to naive CD8+ T cells. HLA class I genotype can influence cancer response to checkpoint blockade immunotherapy (107). TCRs binding to the 
MHC class I–bound neoantigen along with B7-CD28 binding results in the activation of CD8+ T cells specific for the neoantigen. Right: Cytotoxic CD8+ T 
cells traffic to the tumor site following a chemokine signal (e.g., CXCL9/10 secretion binding to CXCR3 on the T cells). At the tumor site, TCR binding to 
MHC class I–bound neoantigens to tumor cells has two outcomes: First, it induces IFN-γ secretion, which is bound by IFN-γ receptors in nearby tumor 
and normal cells, leading to upregulation of MHC class I antigen presentation in those cells. In tumor cells, this facilitates further TCR engagement and 
cytotoxic activity. Concurrently, IFN-γ also induces PD-L1 expression. Second, it leads to T cell activation and tumor killing through Fas/FasL apoptotic 
signaling, granzyme and perforin secretion, and direct cell membrane lysis.
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matory syndromes do not typically develop, demonstrating 
that immune homeostasis can be restored in most patients 
after transient immune receptor disruption (5). Whether long-
term changes in immune regulation occur after ICI therapy is 
not clear, as subtle changes in the risk for spontaneous auto-
immune disease would be too difficult to detect with the small 
populations of treated patients and the relatively short periods 
of follow-up to date. We also do not know the extent to which 
immune-suppressive medications such as corticosteroids are 
necessary in order to achieve restoration of immune tolerance. 
Patients with severe inflammation are always treated, and many 
with less severe inflammation, who may present with grade 1 
symptoms, are never definitively diagnosed.

Relationship to primary immunodeficiency and 
inflammatory bowel disease
Inflammatory bowel disease (IBD) is a relatively common spon-
taneous autoinflammatory disease of the gastrointestinal mucosa  
that resembles ICI-induced colitis in many aspects (5, 89, 90). 

Phenotypically, IBD is divided into two diseases: ulcerative coli-
tis (UC) and Crohn’s disease (CD) (5, 89, 90). UC is a mucosal 
inflammatory disease that affects the colon in a continuous region 
spreading proximally from the anus. UC does not involve the 
small intestines (5, 89, 90). CD, in contrast, can involve any part 
of the gastrointestinal mucosa from the mouth to the anus, and 
often occurs as discrete segments of inflammation surrounded  
by tissue that is spared. Inflammation extends from the mucosa 
to the serosa, leading to complications that are unique to CD, 
such as deep ulcerations, luminal strictures, and fistulas, which 
can involve other organs such as the bladder, vagina, or perianal 
region, and skin (5, 89, 90).

Much like UC, ICI-induced colitis typically involves the gas-
trointestinal mucosa, and complications such as fistulas are not 
seen. In addition, inflammation is typically observed in a contin-
uous pattern, with pancolitis as the most common presentation 
(5, 89, 90). In contrast to sporadic UC, however, involvement of 
the small intestines is common in ICI-induced colitis (5, 35, 89, 
90). The rapid onset of ICI-induced colitis from CTLA-4 block-

Table 2. Major ICI-induced irAEs

irAE Potentially 
life-threatening?

Autoimmunity or 
inflammation?

Mechanistic  
evidence

HLA  
association?

irAE treatment Response to  
therapy?

Predominantly CTLA-4 blockade
 Colitis (5) Yes Unclear Unknown Yes High-dose steroids; infliximab 

for steroid-refractory patients
Yes

 IBD (89, 90) Rare Unclear Genetic evidence implicates 
barrier integrity, pathogen 
detection, and autophagy

No Steroids, immune modulators, 
anti–TNF-α antibodies, integrin 
inhibitors, anti–IL-23 antibodies

Yes

 Hypophysitis (23, 109) Yes, if misdiagnosed Autoimmune Normal pituitary cells 
express ectopic CTLA-4; 
activation of the classic 
complement pathway

Yes High-dose steroids; i.v. 
replacement therapy; if severe,  

ICI discontinuation

Yes

 Fulminant T1D (73) Yes, if misdiagnosed Autoimmune Unknown Yes Insulin therapy Yes

Predominantly PD-1/PD-L1 blockade
 T1D (56, 67, 74, 75) Yes, if in DKA Autoimmune PD-L1 upregulation on islet  

cells that may resist  
T cell–mediated apoptosis

Strong  
association

Insulin therapy Yes

 T2D (69) No Unknown Unknown No Dietary control;  
oral hypoglycemic agents

Yes

 Pancreatitis (80) Yes, if severe Immune-mediated Unknown Unknown Usually medical management Yes
 Thyroiditis (47, 48) Yes, if untreated Autoimmune Strong association  

with thyroid Ab
No Symptomatic, frequently  

lifelong thyroid hormone 
replacement

Yes

 Graves’ disease (59–61) Yes, if untreated Autoimmune TSH receptor Ab No Antithyroid therapy,  
beta blockers, RAI, or  
surgery if necessary

Yes

 Autoimmune polyendocrine 
 syndrome type 2 (77)

Yes, if untreated Autoimmune Unknown Insufficient  
evidence

Hormone replacement  
based on endocrine disorder

Yes

 Primary adrenal insufficiency 
 (adrenalitis) (63)

Yes Autoimmune Unknown No Hydrocortisone replacement 
therapy; fludrocortisone  

if necessary

Excellent 
response

 ICI-induced immune arthritis (48) No Autoimmune Unknown Unknown NSAIDs, DMARDs, biologic  
agents, steroids

Yes

 Myocarditis (118) Yes Autoimmune Unknown No High-dose steroids, IVIg, 
plasmapheresis

High mortality

DMARD, disease-modifying antirheumatic drug; IVIg, intravenous immunoglobulin; RAI, radioactive iodine therapy; TSH, thyroid-stimulating hormone.
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ongoing inflammation observed in patients treated with CTLA-
4 blockade (95–97). While potentially useful in cases of life- 
threatening and refractory inflammation induced by CTLA-4 
blockade, abatacept is also likely to reverse the therapeutic anti-
tumor effect, presenting a powerful downside to its use.

Effects of immune checkpoint blockade on 
tumor cell microenvironment
ICIs have dramatically improved treatment outcomes of a vari-
ety of aggressive tumors. Although approximately 50% of cancer  
patients benefit from immune checkpoint blockade, a subset 
develop autoimmune disorders that can be life-threatening.

Mounting evidence indicates that elevated PD-L1 expression 
may be associated with response to immunotherapy for many 
malignancies. In particular, in patients with advanced non–small 
cell lung cancer, PD-L1 expression in at least 50% of tumor cells 
correlated with improved efficacy of pembrolizumab (36). High 
levels of PD-L1 expression by tumor cells suggests immune eva-
sion by the tumor, and, in essence, this leaves tumor cells vul-
nerable to PD-1/PD-L1 blockade (Figure 3). Interestingly, PD-L1 
appears to be specifically upregulated on pancreatic β cells from 
patients with T1D, and it is induced by both type I and II inter-
ferons via interferon regulatory factor 1 (IRF1) (Figure 3) (74, 98, 
99). Thus, the enhancement of effector T cell function with PD-1/
PD-L1 blockade results in tumor cell killing and response to immu-
notherapy, as well as hypothetically causing irreversible bystander 
β cell damage in pancreatic β cells overexpressing PD-L1, and pos-
sibly neoantigens (100), microbial antigens, or antigens shared by 
tumor cells and normal cells (101). These mechanisms may apply 
to all inflammatory disorders precipitated by immunotherapy.

Many immunotherapeutic approaches to cancer take advan-
tage of the effects of tumor neoantigens. Nonetheless, their role in 
the generation of organ-specific autoimmune responses triggered 
by ICI remains to be elucidated. Tumor neoantigens derived 
from gene fusions are considered highly immunogenic and can 
mediate robust responses to immunotherapy (102). These find-
ings highlight an essential class of tumor-specific antigens and 
have implications for targeting gene fusion events in cancers that 
would otherwise be less poised for response to immunotherapy  
(Table 2). Furthermore, the higher likelihood of tumors with 
DNA mismatch repair deficiency to respond to immunotherapy is 
thought to be due to their higher tumor mutation burden (neoan-
tigens) (Table 3) (103).

Mutations in POLE, a polymerase involved in DNA replication, 
lead to even higher mutational burden in tumors and have been 
associated with excellent response to immunotherapy (104). Other 
described mechanisms/markers associated with response to immu-
notherapy include downregulation of TGF-β1 signaling (105), VEG-
FA secretion (106), and a specific HLA class I genotype (102, 107).

Concluding remarks
IrAEs represent a clinical challenge that can reduce the bene-
fits of antitumor immunotherapy by limiting the treatment dose 
and duration, and in some cases by preventing safe treatment 
as a result of underlying autoimmunity or transplant status. But 
these irAEs also provide, on a more fundamental level, important 
insights into basic immunobiology. The irAEs represent the phe-

ade is also more reminiscent of an infectious colitis than of either 
form of IBD. IBD is more often an indolent disease with periods 
of symptom flares, but it is unusual for a patient to present within 
the first few days of symptom onset with life-threatening inflam-
mation (5, 89, 90). PD-1/PD-L1 blockade–induced colitis is much 
more like IBD in this respect. ICI-induced colitis is almost always 
a monophasic disease, in sharp distinction to IBD, which is nearly 
uniformly a chronic disease with relapses and remissions (5, 89, 
90). Histopathologically, the chronic nature of IBD is associated 
with architectural distortion in the colonic epithelium, a feature 
rarely seen in ICI-induced colitis (5, 32, 33, 35, 89, 90).

The importance of CTLA-4, PD-1, and PD-L1 in the immune 
pathophysiology of IBD itself is presently unclear. A multicenter 
retrospective cohort of patients including more than 100 patients 
with underlying IBD who were treated with CTLA-4 or PD-(L)1 
blockade was recently reported, adding to several smaller case 
series (91–94). In a cohort that included both patients with 
UC and with CD, the gastrointestinal adverse event rate was 
41% compared with 11% in a control cohort, implicating these 
immune checkpoints in maintenance of IBD remission (94). The 
risk of a flare was unrelated to the type of underlying IBD (CD ver-
sus UC), but showed a trend toward an increased risk associated  
with blockade of CTLA-4. All of the currently reported studies 
are retrospective, however, and based on the data available, the 
patients were disproportionately likely to have quiescent disease, 
with many off of all therapy and without symptoms (94). Indeed, 
several of the patients with UC had had prior colectomies, a func-
tional cure (91–94).

Although neither PD-1 nor PD-L1 genetic deficiency has 
been reported in patients, CTLA-4 haploinsufficiency is now well 
described. Patients with monoallelic loss of function of CTLA-4 
develop a multiorgan inflammatory syndrome called CTLA-4 
haploinsufficiency with autoimmune infiltration (CHAI) (95–97). 
This rare disease impairs normal regulation of the immune system 
and results in excessive numbers of lymphocytes and autoimmu-
nity (95–97). Mucosal inflammation is common in CHAI patients, 
with variable severity (95–97). CHAI can be treated with immune 
suppression, but it responds extremely well to CTLA-4 Ig or abata-
cept (95–97). Abatacept is likely to reverse many, if not all, of the 

Table 3. Tumor neoantigens and mechanisms/biomarkers of 
immune responses in general, and response to immunotherapy

Setting Mechanisms/biomarkers of  
response to immunotherapy

References

Tumor neoantigens Gene fusions 102
High mutational load 120, 121

Tumors with DNA mismatch repair 
deficiency

103

POLE-deficient tumors 104
Tumor microenvironment High PD-L1 expression 36

High tumor infiltrate 122
High signature of cytolytic activity 105, 106, 123
Reduced TGF-β1, VEGFA signaling 105, 106

MHC class I genotype Heterozygosity at HLA class I loci 107
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steroids may reduce the full effectiveness of checkpoint blockade 
(109–111). Mounting evidence suggests that irAEs may correlate 
with more effective antitumor responses, yet treatment of these 
irAEs may limit the scope of that benefit (109, 112–114). Innate 
inflammatory cytokines such as TNF-α are clear drivers of some 
irAEs, and evidence has implicated these factors in tumor pro-
motion, making these cytokines potentially attractive treatment 
targets, though definitive evidence that such an approach will be 
beneficial in humans is lacking (115, 116).

Checkpoint blockade targeting CTLA-4 and PD-1/PD-L1 has 
already taught us critical lessons about the regulation of immunity 
and autoimmunity in humans. These immunotherapies are only 
the first in a probable long line of conceptually similar medications 
that will target the full array of regulatory pathways that modulate 
immune responses, and we stand to learn equally important les-
sons from the irAEs induced by these next-generation therapeutics 
(22). This will include agents targeting alternate immune check-
points such as TIM-3 or LAG3, but it will also include blockade of 
innate immune-regulatory pathways such as CD47 and drugs tar-
geting specific regulatory cells such as Tregs or myeloid-derived 
suppressor cells (22). The development of these next-generation 
agents, including combination treatments, will undoubtedly pose 
a considerable clinical challenge for irAE management, but at the 
same time will further expand our understanding of immune regu-
lation and may deepen our understanding of autoimmunity.
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notype of loss of function of checkpoint receptors in humans and 
thus reveal the regulatory role of the targeted receptors in main-
taining immune homeostasis, an important complement to true 
loss-of-function mutations in patients. In genetic loss of function, 
effects on immune system development are difficult to disentan-
gle from effects on mature immune cells, while irAEs specifically 
teach us about the roles of these receptors in immune homeostasis 
after otherwise normal development.

The lessons learned from a detailed understanding of irAEs 
will likely provide important clues into autoimmune diseases 
and potentially critical insights toward the development of new 
treatments. Spontaneous autoimmune diseases progress over an 
unclear period of time, with rarely identified initial events. This 
means that we often study the manifestations of autoimmune 
disease without knowing which of the observed changes are the 
key drivers of the response, and which are the consequences of 
the true immune pathology. The irAEs induced by ICIs clarify the 
relationship between the manifestations of the disease and the 
immune perturbation. We know precisely what the initial disrup-
tion in immune homeostasis was, and when that disruption began.

This may well lead to the identification of new treatment tar-
gets, in addition to deepening our understanding of autoimmu-
nity. Potential treatment targets include immune populations; 
signaling pathways of various ICIs targeting negative immune 
receptors (108); and secreted factors that are expanded/amplified 
at the initiation of the inflammatory toxicity and diminish during 
disease resolution, but that may not be apparent in the tumor 
microenvironment.

The treatment of most autoimmune diseases must balance 
immune suppression with the need to provide protective immunity 
from pathogenic microorganisms. Similarly, immune-suppressive 
treatment for irAEs must balance the effects of these suppressive 
treatments on antitumor immunity. Yet currently, our understand-
ing of the relationship between effective antitumor immunity and 
the mechanisms driving irAEs is rudimentary. We have evidence 
that productive antitumor responses can occur in patients treated  
with corticosteroids, but we also have evidence that cortico-
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