Extensive 3′ alternative splicing of the mu opioid receptor gene OPRM1 creates multiple C-terminal splice variants. However, their behavioral relevance remains unknown. The present study generated 3 mutant mouse models with truncated C termini in 2 different mouse strains, C57BL/6J (B6) and 129/SvEv (129). One mouse truncated all C termini downstream of Oprm1 exon 3 (mE3M mice), while the other two selectively truncated C-terminal tails encoded by either exon 4 (mE4M mice) or exon 7 (mE7M mice). Studies of these mice revealed divergent roles for the C termini in morphine-induced behaviors, highlighting the importance of C-terminal variants in complex morphine actions. In mE7M-B6 mice, the exon 7–associated truncation diminished morphine tolerance and reward without altering physical dependence, whereas the exon 4–associated truncation in mE4M-B6 mice facilitated morphine tolerance and reduced morphine dependence without affecting morphine reward. mE7M-B6 mutant mice lost morphine-induced receptor desensitization in the brain stem and hypothalamus, consistent with exon 7 involvement in morphine tolerance. In cell-based studies, exon 7–associated variants shifted the bias of several mu opioids toward β-arrestin 2 over G protein activation compared with the exon 4–associated variant, suggesting an interaction of exon 7–associated C-terminal tails with β-arrestin 2 in morphine-induced desensitization and tolerance. Together, the differential effects of C-terminal truncation illustrate the pharmacological importance of OPRM1 3′ alternative splicing.


Jin Xu, Zhigang Lu, Ankita Narayan, Valerie P. Le Rouzic, Mingming Xu, Amanda Hunkele, Taylor G. Brown, William F. Hoefer, Grace C. Rossi, Richard C. Rice, Arlene Martínez-Rivera, Anjali M. Rajadhyaksha, Luca Cartegni, Daniel L. Bassoni, Gavril W. Pasternak, Ying-Xian Pan


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.