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Introduction

Breast cancer mortality is almost exclusively a consequence of
metastatic spreading of the primary cancer to distant organs (1).
Treatment outcomes for patients with primary breast cancers,
including those with micrometastatic disease, have substan-
tially improved as a result of the efficient use of adjuvant thera-
pies (2, 3). However, once metastatic disease is established, the
response to the same treatment strategy becomes dismal. The
difference in treatment response between primary tumors and
distant metastases has been attributed, in part, to an ongoing
evolution of heterogeneous cancer cell populations giving rise
to treatment-resistant clones (4). As we and others previous-
ly reported, this is reflected by altered expression of prognos-
tic and therapy-predictive biomarkers during metastasis (5, 6).
The discordance of biomarker expression influences survival
and changes disease management in 1 of 6 to 7 patients (7, 8).
Since cancer evolution can affect therapeutic approaches, there
has been strong interest in understanding the dynamics of the
genomic evolution and dissemination patterns of metastatic
cancer cells during disease progression. Sequencing of spatial-
ly and temporally distinct tumor samples in metastatic prostate
cancer has identified metastasis-to-metastasis spreading (9),
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Metastatic breast cancers are still incurable. Characterizing the evolutionary landscape of these cancers, including the role

of metastatic axillary lymph nodes (ALNSs) in seeding distant organ metastasis, can provide a rational basis for effective
treatments. Here, we have described the genomic analyses of the primary tumors and metastatic lesions from 99 samples
obtained from 20 patients with breast cancer. Our evolutionary analyses revealed diverse spreading and seeding patterns that
govern tumor progression. Although linear evolution to successive metastatic sites was common, parallel evolution from

the primary tumor to multiple distant sites was also evident. Metastatic spreading was frequently coupled with polyclonal
seeding, in which multiple metastatic subclones originated from the primary tumor and/or other distant metastases.
Synchronous ALN metastasis, a well-established prognosticator of breast cancer, was not involved in seeding the distant
metastasis, suggesting a hematogenous route for cancer dissemination. Clonal evolution coincided frequently with emerging
driver alterations and evolving mutational processes, notably an increase in apolipoprotein B mRNA-editing enzyme,
catalytic polypeptide-like-associated (APOBEC-associated) mutagenesis. Our data provide genomic evidence for a role of ALN
metastasis in seeding distant organ metastasis and elucidate the evolving mutational landscape during cancer progression.

whereby rare subclones develop metastatic capabilities within
the primary tumor (10). This opposes the theory that metastatic
potential is a property of the entire primary tumor bulk (11, 12).
Previous breast cancer studies have reported varying degrees of
genomic concordance between metastatic samples and their cor-
responding primary tumors (13-16). A recent study involving 10
patients with metastatic breast cancer reported both monoclonal
and polyclonal origins of metastasis (17). However, none of these
studies discussed the role of axillary lymph node (ALN) metasta-
sis in seeding distant organ metastases.

Regional and distant lymph nodes are the most common
sites for metastatic invasion in various cancers (18). Metastatic
engagement of ALNs is a robust prognostic factor in breast can-
cer (19, 20). One hypothesis is that lymph nodes are way stations
for metastatic seeding via the lymphatic system (21-23). However,
genomic evidence either supporting or refuting such a hypothesis
is lacking, raising the question of whether distant metastases are
primarily seeded lymphatically or hematogenously.

To investigate the evolutionary history of metastatic breast
cancer, we performed whole-exome sequencing on 99 samples
from 20 breast cancer patients with multiple longitudinal and/
or spatially distributed biopsies of primary tumors, local recur-
rent tumors, ALNs, and distant metastases collected during
different therapies. We reconstructed the phylogenetic rela-
tionships of primary cancers to their metastatic descendants,
which revealed patterns of metastatic spreading and the role of
ALN metastasis in subsequent cancer progression. To comple-
ment the phylogenetic results, we performed subclonal analy-
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sis of these samples, which reinforced the phylogenetic results
and identified the subclones responsible for seeding successive
metastases. Finally, we determined that mutational processes
were active during breast cancer progression.

Results

Multiregion sequencing of paired primary and metastatic breast
cancers. We performed whole-exome sequencing of 99 samples
(formalin-fixed, paraffin embedded [FFPE] tissue blocks) from
20 patients with matched normal controls sampled from normal
ALNs (Figure 1A), achieving an average read coverage of 80x
(70% targeted regions with >30x coverage) (Supplemental Fig-
ure 1 and Supplemental Table 1; supplemental material available
online with this article; https://doi.org/10.1172/JCI96149DS1).
This included 33 primary tumor samples (from 17 patients, includ-
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> Patients not deceased
> No data on one or more of the following:
a. Primary tumor
b. ALN metastasis
c. Distant metastasis
» Metastasis material from biopsies or fine needle aspirations only

» Not enough tumor material in paraffin blocks or paraffin
blocks are not available

Figure 1. Cohort description. (A) Patient selection flow chart to study
breast cancer progression. (B) Sample distribution of the number of cancer
samples sequenced per patient. The cohort consisted of 104 samples.

Five metastatic samples failed in the exome sequencing that yielded
ninety-nine samples in total. The red boxes indicate the number of
regions, when more than 1, that were sequenced within the same tumor.
The number of multiple relapses is indicated in the light green boxes. R,
nonsynchronous lymph node metastasis.

ing multiple regions of the same tumors: 2 regions for 4 patients
and 4-6 regions for 3 patients); 6 local recurrence (LR) samples
(from 3 patients); 12 synchronous ipsilateral ALN metastases (from
9 patients); 1 nonsynchronous ALN relapse; and 47 distant metas-
tasis samples (from 18 patients) including multiple regions of the
same metastasis and multiple distant organ metastases from the
same patient (Figure 1B). Figure 2 provides an illustration of all the
tumor samples and anatomical site information for the sequenced
samples. A board-certified surgical pathologist (NFM) verified the
origin of the metastatic lesion, the tumor cell percentage, and the
Nottingham histological grade for all of the samples sequenced
(Supplemental Table 2). We identified a total of 8,859 point muta-
tions (range: 67-1,286; median: 383), of which 3,715 were exonic
(range: 40-325; median: 182) and 2,671 were nonsilent, i.e., mis-
sense, nonsense, or splicing (range: 27-237; median: 127).
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Figure 2. Clinical characteristics and metastatic timeline of the cohort. Timeline illustrating the time of relapse, sequenced cancers (black font), and
unsequenced/failed or missing cancer samples (light gray font) for each patient. PAM50-intrinsic molecular subtype information is provided for all primary
tumors. Patients with primary tumors that lacked a strong PAM50 classification for 1 subtype were classified into the 2 closest subtypes, such as luminal
A/luminal B (patient 17) and luminal A/normal breast-like (patient 19). Each molecular subtype is represented by its own specific color. adr.gl, adrenal
gland; L+, positive ALN; Loc, local relapse; Contr, contralateral event; BL, basal-like; LA, luminal A; LB, luminal B; H2, HER2-enriched; NBL, normal breast-
like; M1, metastasis 1; M2, metastasis 2; M3, metastasis 3; M4, metastasis 4; N/A, not available; N/D, not determined.
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Table 1. Clinical characteristics of the cohort

Median
Minimum
Age at primary tumor diagnosis 52.5yr 34yr
Time to first distant relapse after primary diagnosis 33.5mo 9mo
Time from first distant relapse to death 24.7 mo 19d
Number of relapses per patient 3 1
Number of relapses sequenced per patient 2 1

Range

1,5, 8,and 19) followed a linear progression model
of successive metastasis-to-metastasis spreading
of tumor cells. Phylogenetic trees, along with the

Maximum subclonal composition and related information
on tumors such as the site of metastasis, time of

?g ;/rr relapse,.and prin.qary cancer cbaracteristics for
8.5yr all 4 patients are illustrated in Figure 3, A-D. The

6 high bootstrap values for the most recent com-

4 mon ancestor (MRCA) of all metastasis pairs in

the corresponding phylogenetic trees show strong

Cohort statistics regarding the patient’s age at diagnosis, the
time to relapse, and the average number of relapses per patient are
provided in Table 1. We determined the intrinsic molecular sub-
types (PAM50) for all the sequenced samples using the available
gene expression data (see Methods). All clinicopathological values
including estrogen receptor/progesterone receptor/human epider-
mal growth factor receptor 2 (ER/PR/HER2) status (reanalyzed by
NFM), as well as the intrinsic molecular subtype of primary tumors
are provided in Supplemental Table 3. A schematic of the timeline
of relapses and relapse tumor characteristics are provided in Sup-
plemental Figure 2 and Supplemental Table 4, respectively. The
neoadjuvant, adjuvant, as well as palliative metastatic therapies
provided in our cohort are summarized in Supplemental Table 5.

Breast cancer spreads in either a linear or parallel manner. We
used the Dollo parsimony method (24) to investigate the evolu-
tionary history of cancer cells across different sites from the same
individual. To assess the statistical support of inferred evolution-
ary relationships in the reconstructed trees, we used nonpara-
metric bootstrapping (25). To infer the progression patterns in
metastatic breast cancer, we used the separating property in the
phylogenetic trees. To discriminate the patients in whom distant
metastatic seeding was driven mainly by the primary tumor and
those in whom it was seeded by an earlier distant metastasis, we
used the definition of parallel and linear progression as stated
previously (26). We validated the phylogenetic results using Lin-
eage Inference for Cancer Heterogeneity and Evolution (LICHeE)
(Supplemental Figure 9). In order to investigate the subclonal com-
position and polyclonal seeding in our cohort, we used a Bayesian
clustering method called PyClone (27) (see Methods for details
on all evolutionary analyses). To facilitate the comparison of the
subclonal relationship vis-a-vis the phylogenetic relationship
among samples within each patient, the subclonal information
was embedded in the phylogenetic tree (see Supplemental Figure
3 for an illustration of the overall analysis pipeline). Since some
patients had multiple blocks from the primary tumor sequenced,
we performed an extensive subset analysis to validate the robust-
ness of the phylogenetic inference for progression model analy-
sis, in which different subsets of primary blocks were taken into
account (see Supplemental Methods for details and Supplemental
Tables 6 and 7 for results).

Five patients (patients 1, 4, 5, 8, and 19) fulfilled the inclusion
criteria for the progression model analysis, that is, availability of
sequencing data from the primary cancer and more than 1 distant
metastasis from the same patient. Four of the five patients (patients
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statistical support for our results (Table 2). To val-
idate the robustness of the results in the presence
of only single primary samples, we performed a
subset analysis for patient 5 by taking only single primary samples
and found that the results did not change (Supplemental Table
6). To investigate sample level similarities, we compared shared
and private mutations between pairs of samples in these patients
and discovered that the metastasis pairs had greater similarity
(a relatively higher percentage of shared mutations and a lower
percentage of specific mutations) to each other than they did to
the corresponding primary cancer, which validates the observed
trees (Supplemental Figure 5). Additionally, subclonal analysis
revealed that, in all 4 patients, 1 or more subclones were shared
specifically between different metastases, but not with their cor-
responding primary cancers. Interestingly, the shared subclones
harbored predicted deleterious mutations in previously known
driver genes, such as a MEDI2 missense mutation (p.Q572K) in
patient 1, a STAT3 missense mutation (p.I568M) in patient 8, and a
PALB2 missense mutation (p.G651V) in patient 19.

Unlike the 4 patients discussed above, patient 4, for whom we
sequenced 6 different regions of the primary cancer and 3 distant
metastases (uterus, brain, and colon), followed a parallel progres-
sion model (26). The inference is supported by high bootstrap
values for the MRCA of the primary tumor and each metastasis
(100%, 100%, and 79% bootstrap support for the MRCA of the
primary samples with colon, brain, and uterus, respectively) (Fig-
ure 4). Moreover, by evaluating the evolutionary proximity (i.e.,
shortest distance in terms of the number of edges) of each meta-
static site to each primary block across 1,000 bootstrap trees, we
found that brain and colon metastases had the closest evolution-
ary proximity to Primaryl block (probability of 0.604 and 0.71,
respectively), while the uterine metastasis had the closest evolu-
tionary proximity to Primary5 block (probability of 0.838) (Table
3). Since 6 paraffin blocks from patient 4 were analyzed, we per-

Table 2. Probability of linear progression from an earlier
metastasis to a subsequent metastasis

Patient no. From To Probability
1 Lung (19 mo) Liver (49 mo) 1
5 Bone.R1 (31 mo) Bone.R2 (49 mo) 1
8 Skin (49 mo) Bone (75 mo) 1
19 Brain.R3 (73 mo) Brain.R5 (88 mo) 1

The probability was computed across 1,000 bootstrap trees according to
the blocking property in the phylogenetic trees.
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Figure 3. Phylogenetic and subclonal analysis supports a linear progression model in 4 patients. The ER, PR, and HER2 status, when available for
primary tumors, is indicated above the tree. Subclonal information is represented by lines in the phylogenetic tree. The solid line represents a single
subclone, while the multicolored, dotted line represents multiple subclones. Branch lengths are proportional to the number of substitutions, with the total
number for each branch indicated in parentheses. Branches are annotated with known breast cancer gene alterations including somatic mutations (black),
amplifications (red), and deletions (blue). Bootstrap support values, computed across 1,000 bootstrapped trees, are shown in the black circles. When
subclonal analysis could not be performed for a sample due to low copy number resolution, the respective sample is colored dark gray. The time frames
for metastatic relapses after the primary cancer diagnosis are indicated in months. Information on the inferred subclones and their cellular prevalence is
provided in the cluster table and density plot, respectively, in Supplemental Figure 6, A, E, G, and Q for patients 1, 5, 8, and 19, respectively. (A) Patient 1
had 1 primary tumor, 2 regions of lung relapse (Lung1.R1and Lung2.R1), and 2 regions of liver relapse (Liver1.R2 and Liver1.R2). (B) Patient 5 had 2 regions
from the primary tumor (Primary1 and Primary2) and 2 bone relapses (Bone.R1and Bone.R2). (C) Patient 8 had a primary tumor, an ALN metastasis, a skin
local regional relapse (Local regional Skin.R1), and a bone metastasis (Bone.R2). (D) Patient 19 had 1 primary tumor (Primary), 1 brain relapse 3 (Brain.R3),
and 2 blocks from brain relapse 5 (Brain1.R5 and Brain2.R5).

formed an exhaustive subset analysis by taking all possible com-
binations of primary tumor blocks and then inferring the progres-
sion model. The overall results supported parallel progression in
patient 4, irrespective of the number and combination of primary
samples selected, indicating that the primary tumor had seeded at

least 2 of the 3 metastases (Supplemental Table 7). The subclonal
analysis results also reflected the parallel progression results, in
which, for instance, the red subclone (consisting of 79 mutations
including mutations in putative driver genes like BRCA2, DDR2,
and ROSI) was shared exclusively between Primary5 and uterus
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Figure 4. Phylogenetic and subclonal analysis supports a parallel progression model in 1 patient. For patient 4, six different regions of primary tumors
(Primary1 to Primary6) and 3 metastatic cancers from uterus relapse 2 (Uterus.R2), brain relapse 3 (Brain.R3), and colon relapse 4 (Colon.R4) were sequenced.
Information about the inferred subclones and their cellular prevalence is provided in the cluster table and density plot, respectively, in Supplemental Figure 6D.

(Figure 4 and the density plot in Supplemental Figure 6D). These
results suggest that different distant organ metastases were seed-
ed from different regions of the primary tumor rather than from
each other. Furthermore, no subclones were shared exclusively,
either among all or between any pair of distant metastases, indi-
cating that cancer cells from the primary cancer disseminated
and colonized multiple metastatic sites in parallel and then inde-
pendently accumulated new genetic alterations. Interestingly, the
colon metastasis acquired a likely deleterious BRCA2 mutation
(p.-K3263Q; variant allele frequency [VAF]: 16 of 58; combined
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annotation-dependent depletion [CADD] Phred score: 20.2),
while the uterus metastasis acquired a different, probably benign,
BRCA2 mutation (p.P721T; VAF: 4 of 52; CADD Phred score: 5.5).
The difference in clonality and deleteriousness between the 2
mutations, in addition to the fact that the brain metastasis did not
acquire any BRCA2 mutations, suggests that the 3 metastases had
a divergent, rather than convergent, evolution at the driver events
level. It is important to mention here that the bulk-sequencing
data did not have the required level of resolution to infer complex
self-seeding events. That could be obtained more accurately by
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Table 3. Probability of different regions of the primary cancer
seeding different distant organ metastases in patient 4,
computed across 1,000 bootstrap trees

From primary block To brain To colon To uterus
Primary6 0m3 0.071 0.069
Primary4 0.044 0.033 0.031
Primary2 0.056 0.053 0.027
Primary3 0.044 0.04 0.002
Primary1 0.604 0.7 0.032
Primary5 0.4 0.092 0.838

The probability of different regions of the primary cancer seeding different
distant organ metastases, computed across 1,000 bootstrap trees, was
determined by evaluating the evolutionary proximity of each primary
cancer to each metastasis in terms of the number of edges between them
in the phylogenetic tree. For each metastasis, the highest probability of
being seeded from a particular primary block is indicated in bold font.

using specialized methods, coupled with single-cell sequencing
data. Phylogenetic trees, along with the subclonal density plots for
all the patients, are shown in Supplemental Figure 6.

Distant metastases are seeded without involvement of the syn-
chronous ALN metastasis. In order to investigate whether meta-
static lymph nodes can secondarily seed distant metastases, we
used the separating property in the phylogenetic trees to analyze 8
patients (patients 2, 3, 8,10, 14, 15, 17, and 18) with primary cancer,
ipsilateral ALN metastases, and distant metastasis. Patient 12 was
excluded from this analysis because of unavailable distant metas-
tasis sequencing data. Our analysis revealed very low support for
ipsilateral ALN-based seeding to distant organ metastases (Fig-
ure 5). The highest bootstrap support value for an MRCA of the
ALN and a distant metastasis across 8 phylogenetic trees was 23%
(patient 8), while the other values were zero or almost zero (Table
4).In 3 patients (patients 2, 10, and 15), we sequenced the only pos-
itive ALN (2 blocks sequenced in the case of patient 10), excluding
the possibility of a distant metastasis seeded by an unsequenced
metastatic lymph node. Subclonal analysis revealed that, except
for patient 3, no subclones were shared exclusively among ALN
metastases and any distant metastases, thus supporting the phylo-
genetic results. Even in patient 3, a distant bone metastasis shared
a subclone with the primary tumor, making it equally likely that
either the primary cancer or the ALN was responsible for the dis-
tant organ metastasis. It is important to note that we cannot rule
out the possibility of metastatic seeding from a dormant subclone
in the ALN metastasis to a distant metastasis, when, after seed-
ing, such a subclone becomes active only in the distant metastasis.
Moreover, there is also a possibility that we missed a mutation or a
subclone because it was either in an unsequenced part of the ALN
or was too rare to be detected by the sequencing coverage of the
study. Ideally, one would sequence the entire axillary region, but
clinically, it is unethical to conduct such a study. The phylogenetic
trees, along with the subclonal composition for patients 2 and 10
(patients with all positive lymph nodes sequenced) and patient 14
(1 of 14 positive lymph nodes sequenced), are shown in Figure 5,
A-C, respectively, while similar plots for the other 5 patients are
shown in Supplemental Figure 6, C, G, M, O, and P.
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Distant metastases ave seeded in either a monoclonal or polyclonal
manner from primary breast cancer. We studied subclonal propaga-
tion from the primary cancer to distant metastases in 15 patients,
after excluding 5 patients (patients 6, 7, 12, 13, and 16) for whom
the sequencing data from either the primary cancer or the distant
metastasis was missing. By identifying subclones shared among
different samples from a single patient, we observed both mono-
clonal (1 subclone) and polyclonal (more than 1 subclone) seeding
from primary breast cancers to distant metastases. Four of fifteen
patients (patients 8, 15, 17, and 19) had monoclonal seeding (27%),
and eleven of fifteen patients (patients 1, 2, 3, 4,5, 9, 10, 11, 14, 18,
and 20) had polyclonal seeding (73%) (Supplemental Table 8). The
number of sequenced primary samples did not correlate with the
seeding patterns (P = 0.56, Fisher’s exact test). Interestingly, all 4
of the patients (patients 8, 15, 17, and 19) with monoclonal seeding
had primary cancers of a luminal subtype (based on PAM50 and
THC analysis) (Supplemental Table 3). However, we also observed
polyclonal seeding in 3 patients (patients 5, 18, and 20) with a
luminal subtype, while 8 of 11 patients with polyclonal seeding
had nonluminal subtypes (6 basal and 2 HER2 enriched). All of the
patients with metastasis-to-metastasis spreading (patients 1, 5, 8,
and 19) had polyclonal seeding between successive metastases.

Substantial interindividual genomic diversity among prima-
ry tumors and metastases. In order to demonstrate the extent of
genomic alterations during breast cancer progression, we cate-
gorized the genetic alterations into site-specific categories, i.e.,
truncal (shared among all samples analyzed, i.e., primary tumors
and metastases in a patient), branch (shared by at least 1 primary
tumor and 1 metastasis), primary, LR, ALN, and metastasis; the
last 4 categories include alterations specific to those samples. We
observed large interindividual differences in the number of muta-
tions shared among primary tumors and metastases, indicating
varying points of divergence from the primary tumor to distant
metastases (Figure 6A). On average, 55% of the primary mutations
were retained in the distant metastatic lesions, with considerable
disparity among individual patients, ranging from 9% to 88%, and
an interquartile range (IQR) of 36% (Figure 6B). To test whether
different types of treatment had affected the mutational load, we
compared the fraction of mutations privately detected in metasta-
ses between treated and untreated patients and found no signifi-
cant difference for any type of treatment. Copy number variation
(CNV) analysis revealed the most altered genomic regions during
tumor progression, which included chromosome arms 1q, 8q, and
20q amplifications and 8p and 17p deletions (Figure 7A).

We used a set of putative driver genes in breast cancer com-
piled by Yates et al. (16) to determine the timing and frequency
of driver alterations during breast cancer progression (Figure
7B). Driver alterations such as TP53, PIK3CA, PTEN, and GATA3
mutations and MYC and ERBB2 amplifications were predom-
inantly early events. However, all these genes, except GATA3,
gained alterations privately in metastasis in at least 1 patient, indi-
cating secondary late driver events (Figure 7B). For example, the
brain metastasis in patient 15 gained a TP53 mutation (p.R116Q),
and another brain metastasis in patient 17 gained a PIK3CA muta-
tion (p.H1047R) and 2 frameshift insertions in PTEN in different
alleles, suggesting biallelic inactivation. While most other putative
driver alterations varied in their timing of occurrence, a few were
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(Lymph), and 2 regions of brain relapse 1 (Brain1.R1
and Brain2.R1) were sequenced. Information about
inferred subclones and their cellular prevalence

is provided in the cluster table and density plot,
respectively, in Supplemental Figure 6, B, |, and

L, for patients 2, 10, and 14, respectively. Colon1.
R1, colon block 1relapse 1; Colon2.R1, colon block 2
relapse 1; Lymph1, ALN block 1; Lymph2, ALN block
2; Skin1.R2, skin block 1 relapse 2; Skin2.R2, skin
block 2 relapse 2; Skin3.R2, skin block 3 relapse 2;
Brain1.R1, brain block 1 relapse 1; and Brain2.R1,
brain block 2 relapse 1.
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Table 4. Probability of an ALN metastasis seeding distant organ metastases in all 8

patients with 1 or more metastasis-positive ALNs

Patient no. From To Probability
2 Lymph Colon 0

3 Lymph Bone 0.005
8 Lymph Bone 0.233
8 Lymph Skin 0.233
10 Lymph Skin 0.019
10 Lymph2 Skin 0.057
14 Lymph Brain 0
15 Lymph Liver 0.029
17 Lymph Brain 0.002
18 Lymph1 Skin 0
18 Lymph2 Skin 0

The probability was computed across 1,000 bootstrap trees according to the blocking property in the

phylogenetic trees. “Two blocks sequenced per lymph node.

No. of nodes sequenced/
total no. of metastasis-positive nodes

ferent categories (P <0.01, Kruskal-Wallis).
We observed increased activity of muta-
tional processes of the APOBEC signature
S2 (P < 0.01, Mann-Whitney U test with
FDR correction), the unknown etiology

1 signature S3 (P < 0.05), and the HR signa-
12 ture S4 (P < 0.05) in the metastasis-specif-
1/3 ic category relative to the primary-specific
113 category (Figure 8C). The aging signature
N S1 did not indicate a significant change
™" between primary-specific and metasta-
172 sis-specific categories. However, its contri-
7 bution was depleted in truncal mutations,
1/3

suggesting a passive role for the S1 signa-
ture during clonal expansion. Our evalua-
tion on an individual basis revealed that 14
of 15 patients had a significantly increased
contribution of at least 1 of the 3 signatures

2/17
2/17

late events that occurred privately in a distant metastasis. These
included BRCA2, ESRI, and STAT3 mutations, as well as AKT2 and
EGFR amplifications. In total, 963 genes were found to be mutated
privately in the metastatic category. Pathway enrichment analysis
of these genes identified laminin interactions (P = 0.0001, g val-
ue = 0.098), nonintegrin membrane-extracellular matrix (ECM)
interactions (P = 0.0011, g value = 0.372), and degradation of the
ECM (P=0.0036, g value = 0.378) as the top significantly mutated
pathways (see Supplemental Table 9 for the lists of mutated genes
and pathways for all categories analyzed). Taken together, our
results suggest that distant metastatic lesions show interindividu-
al disparity in genomic divergence from the primary tumors, with
the common occurrence of putative driver alterations during later
stages of breast cancer progression.

Activity of mutational processes evolve during breast cancer
progression. The repertoire of somatic mutations in the cancer
genome carries the imprint of underlying operative mutational
processes (28). At least 4 signatures (labeled S1, S2, S3, and S4)
were found to be operative in our cohort (Figure 8A), and 3 of
them (S1, S2, and S4) were mapped to known mutational process-
es (Supplemental Figure 7, A-C). The S1 signature is characterized
by an elevated number of C>T substitutions in the NpCpG context
resulting from spontaneous deamination of 5-methyl-cytosines
and was associated with the patient’s age at diagnosis (28). The S2
signature has an excess of C>T and C>G mutations in the TpCpN
context attributed to the activity of the apolipoprotein B mRNA-
editing enzyme, catalytic polypeptide-like (APOBEC) family of
cytidine deaminases (29). The S3 signature is a generic signature
with unknown etiology that is characterized by slightly elevated
C>A, C>T and T>G mutations. Finally, S4 is also a generic signa-
ture attributed to deficient homologous recombination (HR) in
double-strand break repair that is partly explained by BRCAI and
BRCA2 germline mutations (28).

We evaluated signature contributions across site-specific cate-
gories in patients to assess their signature contribution separately
(Figure 8B). All signatures showed different contributions in dif-

(S2, S3, and S4) in metastatic lesions rela-
tive to their corresponding primary lesions
(P < 0.05, Fisher’s exact test with FDR
correction). Interestingly, patient 4, who acquired 2 independent
BRCA2 mutations in 2 metastatic lesions, showed a significant
increase (P < 0.05 or P = 0.0006, Fisher’s exact test with FDR
correction) in the S4 contribution. We found no statistically sig-
nificant association between the increased activity of a certain
mutational process and the molecular subtype or treatment (P >
0.1, Fisher’s exact test).

Discussion

From a clinical point of view, one of our most important obser-
vations was that ipsilateral synchronous ALN metastases were
genetically diverse compared with distant organ metastases
across all patients. This indicates that ipsilateral ALN metastasis
is not crucial for seeding distant metastases; rather, its prognostic
value merely reflects the stage migration effect and the acquired
capability of cancer cells to survive and proliferate in other organs
(30, 31). The role of ALN metastasis has been explained using a
speedometer analogy (32). The authors assert that, just as remov-
ing the speedometer of a car does not reduce its speed, the remov-
al of positive ALNs does not affect the rate of metastasis. In other
words, ALN status is very useful for predicting the tumorigen-
ic capability of the primary tumor but does not drive metastasis
per se. Hence, dissection of positive ALNs will not reverse this
capability, since spreading to distant sites appears to occur via a
hematogenous, rather than a lymphatic, channel. Moreover, gene
expression profiles of the primary tumor can predict metastasis
location and survival, independent of ALN status, which further
supports the idea that ALN metastasis is not the major factor in
determining distant metastatic progression (33-35). Finally, the
genetic characterization of primary cancers provides important
prognostic and predictive information that increasingly super-
sedes the informative capacity of lymph node status (33, 36).
Indeed, several large, randomized clinical trials have demonstrat-
ed that ALN resection for limited metastasis conferred minimal or
no survival benefit for breast cancer patients (37-40). A few other
reports also stated that positive lymph nodes do not metastasize
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(41, 42), which is in concordance with our observations. A recent
study by Brastianos et al. (43) that involved 86 brain metastases,
21 of which were breast cancers, also showed that regional lymph
nodes and brain metastasis were genetically distinct and, hence,
that the former was not a reliable surrogate for the oncogenic
alterations found in the latter.

We demonstrated that primary breast cancer either direct-
ly seeds metastases at various distant sites in a parallel manner,
or, alternatively, it initially seeds 1 distant metastasis that in turn
seeds successive metastases in a linear manner. However, the spe-
cific characteristics related to primary breast cancer’s favoring one
progression model over the other are still unclear. Moreover, mul-
tiple other factors including therapy resistance can have an impact
on the time frame and seeding pattern of a metastasis. Studies
involving larger patient cohorts are needed to accurately quantify
the abundance of each progression model and its correlation with
molecular subtypes and the treatment provided and would serve
to improve the clinical management of metastatic disease. For
instance, in a parallel progression model, in which distant metas-
tases evolve independently, biopsies from a single metastatic site
for clinical decision making might not be sufficient.
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The specific design of our cohort, composed of spatially and
temporally separated tumor specimens, allowed us to investigate
the subclonal relationship of primary tumors with multiple system-
ic metastases in unprecedented detail. For instance, in patient 4,
we observed that distinct, spatially separated subclones in the pri-
mary tumor were independently seeding different distant organ
metastases. This suggests that multiple subclones can acquire
unique seeding capabilities that enable them to independently
colonize different anatomical sites in a “seed and soil” manner.
The extent of subclonal heterogeneity in primary tumors corre-
sponding to different molecular subtypes might influence wheth-
er the distant metastases are seeded in a monoclonal or poly-
clonal manner. For instance, all distant metastases of basal and
HER2-enriched breast cancer patients were polyclonally seeded
from the primary tumors, where multiple subclones acquired met-
astatic capabilities. On the other hand, distant metastases seeded
by a single subclone from the primary tumors were always of the
luminal subtype, emphasizing the importance of having different
management strategies for different breast cancer subtypes. We
also observed that, irrespective of any molecular subtype, subse-
quent seeding of cancer cells from 1 metastatic organ to another
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always occurred in a polyclonal manner, suggesting a cooperation
between different subclones in adapting to the new microenviron-
ment during an advanced disease stage. Furthermore, it demon-
strated that polyclonal seeding is a mechanism for preserving the
level of heterogeneity when colonizing new distant sites, thereby
maximizing the likelihood of the emergence of treatment-resis-
tant clones. Polyclonal seeding of distant metastasis has previous-
ly been demonstrated using an experimental breast cancer mouse
model (44). A matched primary metastases cohort provided us
the opportunity to study the somatic, nonsynonymous mutations
present exclusively in distant metastases. Pathway analysis of the
genes harboring these mutations revealed that ECM degradation
and laminin interaction pathways were highly enriched, suggest-
ing their crucial role in successful colonization at distant sites.
Using mouse models, Naba et al. (45) recently showed that ECM
composition differs among cancer cells of differing metastatic
potential. Thus, genes involved in ECM and laminin interactions
should be investigated in detail for their therapeutic and prognos-
tic value in metastatic breast cancer.

Optimal management of metastatic disease requires detailed
knowledge of the biological characteristics including therapy-
predictive factors and alterations in druggable targets, such as
HER?2 and ESRI. For instance, patient 1 acquired HER2 amplifica-
tion, and patient 5 acquired ESRI amplification, specifically in their
metastatic lesions but not in their primary cancer. These amplifi-
cations were also supported by the immunohistochemical staining
of HER2 and ESR1 on the respective metastatic tumor sections.
Furthermore, in an ER-positive patient (patient 13), we detected
an ESRI mutation (p.D538G) in bone and nonsynchronous ALN
metastases but not in the earlier LR. These data highlight the
importance of characterizing the metastatic lesions for potential
clinical interventions. However, metastatic biopsies are not always
feasible for this purpose, therefore, the development of liquid biop-
sy techniques is warranted (46). Additional studies are needed to
evaluate whether liquid biopsies are capable of representing the
genetic heterogeneity of metastatic lesions in its entirety.

The 4 mutational signatures identified in our cohort were
previously reported in primary breast cancers (47), however, their
relative activity during breast cancer progression remained uncer-
tain. The relative contribution of the aging signature decreased
during cancer progression, giving rise to other mutational signa-
tures. The signature contribution related to homologous recombi-
nation (HR) deficiency and a process of unknown etiology changed
in both directions in a patient-dependent manner, with a majority
of the patients showing increased activity. However, the APO-
BEC-associated signature consistently showed increased or sim-
ilar activity across all metastases, indicating its significant role in
the progression and selective advantage of its induced mutations.
Quantifying the activity of different mutational processes in met-
astatic cancers and understanding their underlying mechanisms
may provide markers for alternative therapeutic strategies such as
the use of PARP inhibitors in patients with increased activity of the
HR deficiency signature. Increased APOBEC activity during pro-
gression has been described in lung cancer (48) and was assumed
to influence tumor heterogeneity and a “mutator” phenotype (49).
Different strategies have been suggested to limit the development
of resistance-causing mutations. For instance, preventing APO-
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BEC activation by accelerating the mutation rate beyond the limit
of lethal mutagenesis may be a valuable approach (49, 50). Wheth-
er the APOBEC activity is indeed of prognostic value in breast can-
cer needs to be addressed in a larger patient cohort.

In conclusion, our study demonstrates that ipsilateral ALN
metastases, irrespective of their strong prognostic value, which has
been frequently demonstrated in multivariate testing, had a consis-
tently passive role in seeding and spreading to distant sites. Second,
our study shows a high level of inter-patient heterogeneity in terms
of metastasis seeding and spreading modes. Finally, our obser-
vations reveal changing activity of the mutagenesis mechanism
during cancer progression, accompanied by late induction of driver
mutations specific to the metastatic lesions, suggesting an altered
tumor biology compared with that of the primary breast cancer.

Altogether, these observations provide a comprehensive over-
view of breast cancer evolution in existing clinical scenarios that
emphasizes the importance of genomic characterization of differ-
ent metastatic lesions prior to clinical decision making, as these
lesions may originate in parallel without notable phenotypic con-
vergence, or successively with an ongoing accumulation of driver
events. However, the characterization of metastatic ALNSs is not of
the same importance, given their less significant role in metastat-
ic seeding. The high prognostic value of ALN status in the clinical
management of metastatic breast cancer is generally known and
has also been frequently demonstrated in multivariate analyses.
Furthermore, both the sequencing of bulk tumors and the math-
ematical models used to assess such data are still far from per-
fect. Therefore, we anticipate that follow-up studies will validate
our results. A recent large-scale, whole-genome sequencing study
of 560 primary breast cancers confirmed the rarity of recurrent
fusion genes and noncoding driver mutations (47). This recent
study further asserted that the majority of genes containing driver
mutations are now known. Thus, sequencing studies within larger
patient cohorts as well as ultra-deep sequencing will help to con-
firm our results regarding progression patterns and the passive role
of ALN metastasis in seeding distant organ metastases.

Methods

Patients’ material. We assembled a cohort of 20 female patients for this
study. For each of these patients, we collected paraffin-embedded mate-
rial from the primary breast cancer, LR, ipsilateral ALN metastases, and
distant metastases. The patients were identified through searches in
the IT-support system using the patients’ electronic medical records. A
board-certified surgical pathologist at the Karolinska University Labo-
ratory diagnosed the lesions as metastatic breast cancer. Further details
on the patient selection criteria, sample acquisition procedures, and
sequenced samples are provided in the supplemental material.

Tissue microarray and IHC staining. Two tissue microarrays with 43
tumor cores in each from 20 breast cancer patients (both primary and
metastatic cancers) were prepared at the accredited clinical laboratory of
the Department of Clinical Pathology of Karolinska University Hospital.
The paraffin blocks were cut into 3-um sections and stained for ER, PR,
HER2, and Ki-67. A description of the antibodies used and assessments
of the IHC-based subtypes are provided in Supplemental Methods.

RNA extraction and PAM50 molecular subtyping after subgroup-
specific gene centering. RNA was extracted from two 10-pm sections per
FFPE tumor block using an RNeasy FFPE Kit (QIAGEN) according
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to the manufacturer’s instructions. A SensationPlus FFPE Amplifica-
tion Kit (Affymetrix) was used to amplify the RNA and profiled in the
GeneChip Human Transcriptome Array 2.0 (Affymetrix). Probe inten-
sities were extracted from CEL files, background corrected, normal-
ized, and summarized for probe set expression using the robust mul-
tichip average (rma) function from the Oligo Package (version 1.30.0)
in R (version 3.1.2) from Bioconductor. Further details on the PAM50
subtype classification, the samples analyzed, and the patients whose
subtypes changed are provided in the Supplemental Methods.

DNA extraction and preprocessing of whole-exome sequencing reads.
We isolated cancer DNA from thick serial sections of FFPE tissues
using a QIAamp DNA FFPE Tissue Kit (QIAGEN). We used DNA
from normal ALN FFPE tissues as germline controls. In all cases, we
followed the manufacturer’s recommended protocol. Genomic target
capture was performed using the SureSelectXT2 Human All Exon V5
Kit (Agilent Technologies), and captured libraries were whole-exome
sequenced on an Illumina HiSeq 2500 Instrument using 2 x 100-bp
sequencing reads. Raw sequencing reads were quality and adapter
trimmed with Trim Galore (version 0.3.7) with the following parame-
ters: --quality 20 -stringency 2 -length 70 -clip_R1 10 -clip_R210. The
trimmed reads were aligned to the reference human genome (hgl9)
using BWA-MEM (version 0.7.12) with default parameters. Aligned
reads were sorted and marked for duplicates with Picard (version
1.113). Next, base quality recalibration and realignment around indels
were performed using the Genome Analysis Toolkit (GATK version
2.7), which resulted in ready-to-use BAM files. The achieved cover-
age in target regions was on average 80x (70% targeted regions with
>30x coverage) (Supplemental Figure 1 and Supplemental Table 1).
All preprocessing and downstream analyses were performed with-
in the Anduril framework for scientific data analysis (51). Sequenc-
ing data were deposited in the European Genome-phenome Archive
(EGA), which is hosted by the European Bioinformatics Institute (EBI)
and the Centre for Genomic Regulation (CRG) (accession number
EGAS00001002737).

Variant calling, filtering, and copy number alteration detection.
We performed point mutation calling using a 2-step approach
with MuTect v1.1.4 (52). In the first step, we used MuTect with the
high-confidence mode to call somatic variants from individual can-
cer samples in a matched, cancer-normal setting. In this run, we used
single nucleotide polymorphism database (dbSNP) variants, version
138, and Catalogue of Somatic Mutations in Cancer variants, build
68, as inputs to MuTect. In the second step, each detected variant
was screened for allele counts in the other samples from the same
patient using MuTect, with the option of forcing the output in selected
intervals (coordinates of detected variants in the first step). Then, to
account for potential artifacts induced by FFPE samples, we filtered
C>T/G>A mutations that were private to 1 sample and had a VAF of
less than 0.15. To rescue potential real mutations, we excluded from
these criteria variants that were reported in the COSMIC database
(version 68) and variants with at least 2 reads supporting the variant
allele in each strand. Second, we filtered shared variants that had a
VAF of less than 0.15 if the respective control sample had any number
of reads supporting the variant allele. To test how effective this filter-
ing was at removing FFPE C>T/G>A artifacts, we divided the samples
into 2 groups on the basis of sample age and compared the number
of C>T/G>A mutations between the 2 groups, both before and after
filtering (Supplemental Figure 12).
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Somatic indels were identified using 2 steps with VarScan2, version
2.3.6. In the first step, we detected indels in each sample using a mini-
mum cancer sample read depth of 20, a minimum control sample read
depth of 15, a minimum number of reads supporting a variant allele in
a tumor sample of 4, a maximum number of reads supporting a vari-
ant allele in a normal sample of 0, a minimum variant allele frequency
of 0.05, and the strand artifact filter turned on. In the second step, we
scanned the detected indels in all samples from the same patient using
VarScan2 mpileup2cns, quantified the VAFs, and discarded multiallelic
indels. Functional annotation and the effect prediction of variants were
performed using ANNOVAR and RefSeq genes (53). CADD was used
for scoring the deleteriousness of variants (54). An absolute estimation
of copy number alterations was performed with AscatNGS (Ascat, ver-
sion2.3), which allowed for the estimation of ploidy and purity values
for each sample (55). Genes were assigned the copy number of the
most overlapping segment. Genes were called amplified if the assigned
absolute copy number was larger than the average ploidy multiplied by
1.5 and were call deleted if the assigned absolute copy number was less
than the average sample ploidy multiplied by 0.5.

Phylogenetic tree reconstruction. For phylogenetic tree reconstruc-
tion, we used a variant of the parsimony method, named Dollo parsi-
mony (24). The method is based on the assumption that it is harder to
gain a mutation than it is to lose it, which is appropriate when consid-
ering tumor evolution. Detailed assumptions in the Dollo parsimony
method are provided in Supplemental Methods. Dollo parsimony takes
as input an S x M binary matrix D, where D, = 1if the i sample has a
VAF of at least 5% for the j* mutation. The VAF values are normalized
for tumor purity and are estimated using AscatNGS. We performed
bootstrapping (56) to estimate the statistical confidence of evolution-
ary relationships among samples. For each patient, the bootstrap sup-
port for internal nodes was computed using 1,000 bootstrap samples.

For phylogenetic tree reconstruction, we used the R interface for
the Dollo and Polymorphism Parsimony Program (Rdollop) function
from the R package Rphylip (57), which is a wrapper around the dollop
program in the PHYLIP library (58). For bootstrapping, we used the
Tree Bipartition and Bootstrapping Phylogenies (boot.phyo) function
from analysis of phylogenetics and evolution (APE) in R package (59).
The R code used for phylogenetic reconstruction is provided in the
supplemental material.

Separating property in the tumor tree. Once a tumor tree was recon-
structed for each patient, we used the separating property to infer the lin-
ear or parallel progression. The separating property is described below.

Somatic mutations accumulate as healthy tissue develops and fur-
ther progress toward cancer. We assumed that any mutation found in a
primary cancer had occurred in one of'its present or ancestral cells and
that all cells of the primary cancer descended from cells of either the
primary cancer or the healthy tissue. This implies that, in a tumor tree,
any path from a germline sample, or any other sample representing
healthy tissue, to a primary cancer sample represents ancestral ver-
sions of the primary cancer. Moreover, the mutations along the path
have occurred exclusively in the primary cancer. We defined a path P,
between 2 samples, s and ¢, as being separated if it intersected any ger-
mline-to-primary path P, i.e., if P, and P shared at least 1 vertex.

We used the separating property for inferring archetypical pat-
terns of cancer progression. If the path between 2 nonprimary samples
s and t was separated, then the most recent common ancestor of s and
tinthe tumor tree was a vertex representing an ancestral version of the
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primary cancer. From this, it followed that # could not have seeded s
and s could not have seeded ¢ (see Supplemental Figure 4A), i.e., linear
progression from s to t, and vice versa, could be ruled out. In contrast,
if the path between s and ¢ was not separated, then the MRCA of s and
¢t may represent an ancestral version of the primary cancer, or it may
represent an ancestral version of another sample, e.g., s, t, or another
distant metastasis site (see Supplemental Figure 4B). Therefore, this
was consistent with linear as well as parallel progression from s to ¢, or
vice versa. We do, however, generally consider that the nonseparating
property suggests linear progression.

If we also assume that a single cell has seeded each of the nonpri-
mary sites, then it follows that all samples from the same site have to
form a subtree of the tumor tree. This conclusion turned out to be vio-
lated in several of the tumor trees, which implies that multiple seeding
had occurred from the primary cancer to distant metastases as well as
from the primary cancer to ALNs. The seeding results from our sub-
clonal analysis further reinforce this observation. In fact, polyclonal
seeding from the primary cancer to distant metastases was inferred
in 73% (11 of 15) patients. Moreover, we observed different copy num-
bers across samples from the same site (e.g., see ALN1 and ALN2 in
the heatmap for patient 18 in Supplemental Figure 8). Nevertheless,
every tree was consistent with cancer being initiated in a single cell.

Separating property and ALN-based distant metastasis. In each of
the tumor trees containing ALN samples, the path from the ALN to
distant metastases was separated, which implies that the former had
not seeded the latter (see Supplemental Figure 6, B, C, G, I, L, M, O,
and P). Although, it may be hypothesized that ALNs, together with
the primary tumor, have seeded distant metastases, our data led us to
reject this hypothesis. First, in the evolutionary analysis, we observed
that the path from ALNs to distant metastases was separated in every
tumor tree (see Supplemental Figure 6, B, C, G, I, L, M, O, and P). Sec-
ond, with the exception of patient 3, we observed that, based on the
subclonal analysis, a subclone was shared between ALNs and distant
metastases only if it was also shared with the primary cancer. Con-
versely, in most of the cases, a distant metastasis shared an exclusive
clone with the primary cancer and/or with another metastasis.

Subclonal analysis. We used PyClone, version 0.13.0 (27), for
analysis of the subclonal population structure. PyClone is based on a
Bayesian clustering method, which uses a Markov chain Monte Car-
lo-based (MCMC-based) framework to estimate cellular prevalence
values using somatic substitution (estimated using Mutect), copy
number aberration, and tumor purity data (estimated using Ascat-
NGS). Details on Mutect and AscatNGS analyses are described in
the section Variant calling, filtering, and copy number alteration detec-
tion. PyClone is implemented in the Python programming language.
Details on the parameter values used in the PyClone analysis are pro-
vided in the supplemental material.

The following criteria were used to filter out low-occurrence clus-
ters: (a) a cluster was considered only if it had 10 or more mutations;
and (b) a cluster sc in a sample s was considered only if the mean cellu-
lar prevalence of sc was greater than or equal to 0.05, i.e., sc was pres-
ent in at least 5% of the cells in s.
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Mutational signatures. Extraction of mutational signatures was
performed with nonnegative matrix factorization in R, version 3.2.3,
using the SomaticSignatures package, version 2.6.1 (60). Details on
the mutational signature analysis including determination of the num-
ber of signatures and mapping of identified signatures to previously
described ones can be found in the supplemental material.

Statistics. All statistical tests were computed in R and were 2
sided. Adjustments for multiple hypothesis testing were applied
when needed using the FDR method. A P value threshold of 0.05
was considered significant.

Study approval. This study was approved by the ethics committee
of Karolinska Institutet. All patients provided written informed con-
sent to participate in the study.
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