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SCN5A expression in HF
HF represents a final common pathway 
for a wide range of inherited and acquired 
cardiac conditions (1). Disease progression 
consists of a series of maladaptive respons-
es, which include ion channel remodeling 
(2), neurohormonal dysregulation, meta-
bolic derangement, oxidative stress, and 
profibrotic signaling (1). HF patients are at 
an increased risk of death from sudden car-
diac arrest (2) and progressive pump fail-
ure (1). Risk stratification of HF patients to 
identify those at highest risk represents an 
unmet need as advanced therapies, such 
as implantable cardioverter defibrillators 
(ICDs) or ventricular assist devices, could 
be offered more selectively.

Evaluation of clinical factors that con-
fer increased risk of morbidity and mortal-
ity in HF patients show clear correlation 
with QRS duration, a marker of ventricular 
activation time and myocardial dyssyn-
chrony (3, 4). As the cardiac sodium chan-
nel pore-forming subunit NaV1.5 (encoded 
by SCN5A) is the principal determinant of 
cardiac excitability and conduction in the 
subendocardial His-Purkinje network and 
ventricular chamber myocardium (5–8), 
tight regulation of this gene ensures opti-
mal cardiac function and stable rhythm 

(5, 6). Although mutations in SCN5A have 
been implicated in arrhythmic diseases 
such as progressive cardiac conduction 
disease (9), Brugada syndrome (10), and 
long QT3 (11, 12), and can produce cardio-
myopathic changes (13, 14), the vast major-
ity of HF patients are not mutant carriers. 
Therefore, intense research has focused 
on identifying genetic modifiers of SCN5A 
expression that may confer increased risk 
for conduction disease, arrhythmic events 
(15), or mortality in HF patients.

Several genome-wide association 
studies (GWAS) of cardiac conduction 
parameters have identified strong asso-
ciation with single nucleotide polymor-
phisms (SNPs) in the SCN5A locus (16–19). 
Decoding whether or not these SNPs 
have functional consequences on SCN5A 
gene expression is essential. Moreover, 
determining whether the SNPs that alter 
SCN5A expression have impact on clinical 
syndromes, including heart failure, is of 
particular interest. 

Modulation of SCN5A 
expression
In this latest edition of the JCI, Zhang et al. 
(20) employed a new approach to under-
stand how GWAS-identified SNPs can 

modulate SCN5A expression by altering 
miR-dependent regulation. MiRs are short 
(~19–22 nucleotides), noncoding RNA spe-
cies that are potent regulators of mRNA 
transcript stability and translation (21, 
22). MiRs are encoded either in intronic 
regions where they are cotranscribed with 
protein-coding exons, or in intergenic 
regions under the control of their own 
promoters (21, 22). Mature miRs are coas-
sembled with Argonaute (Ago) proteins as 
part of the RNA-induced silencing com-
plex (RISC) (21). In the classic paradigm, 
miRs target mRNA via their 3′ untranslat-
ed region (UTR) through complementary 
base-pair interaction with the miR “seed” 
region (5′ region of miR; nucleotide posi-
tions 2–8). This miR-mRNA interaction 
targets mRNA for cleavage or reduces 
translational efficiency (21). The short 
sequence interactions allow for miRs to 
broadly regulate an array of mRNA tran-
scripts that collectively control biological 
processes, such as calcium homestasis (23) 
or metabolism (24). Therefore, identifi-
cation of bona fide miR targets in a given 
tissue is essential for therapeutic targeting 
and prevention of off-target effects.

To identify miR targets in the heart, 
Boudreau and colleagues previously report-
ed a high throughput method to globally 
profile miR-mRNA target interactions in 
human cardiac tissue (25). They applied 
a technique known as high-throughput 
sequencing of RNA isolated by crosslinking 
immunoprecipitation (HITS-CLIP), where 
Ago2 protein was immunoprecipitated to 
identify bound miRs and mRNAs (25, 26). 
By overlaying common SNPs on top of the 
transcriptome-wide map of miR binding 
sites, they identified a non–amino acid 
altering (synonymous) SNP (rs1805126, 
T>C) adjacent to a miR-24 interaction site 
in the SCN5A coding sequence (25). The 
rs1805126 minor allele was previously 
shown to associate with cardiac conduction 
parameters in GWAS (18), but the synony-
mous nature of the variant led to the pre-
sumption that the variant was not causal.

Zhang et al. (20) hypothesized that 
the rs1805126 minor allele alters miR-24–
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associated with a more severe cardiomyo-
pathic phenotype, Zhang et al. (20) studied 
Scn5a heterozygous knockout mice, which 
develop increased fibrosis at advanced 
age (32). Scn5a heterozygous knockout 
hearts had significantly increased reac-
tive oxygen species (ROS) as evidenced 
by an approximately 2.5-fold increase in 
oxidation of dihydroethidium (DHE, a 
measure of steady-state levels of super-
oxide), which was evident before fibrotic 
changes. Although association between 
rs1805126 genotype and increased oxi-
dative stress was not examined, the find-
ing that reduced Scn5a expression is suf-
ficient to increase ROS is intriguing and 
needs further investigation. Accumula-
tion of ROS can result from either over- 
production or impaired clearance (33). 
Increased ROS production in HF is pri-
marily due to functional uncoupling of the 
mitochondrial electron transport chain 
(34–37); however, other sources include 
xanthine oxidase (38), nitric oxide syn-
thase (39), cyclooxygenase (40), and 
NAD(P)H oxidases (41). Mechanisms 
of impaired clearance by antioxidants 
include reduced activity of superoxide 
dismutase (42) and catalase (43). Identify-
ing which of these pathways contributes to 
ROS accumulation due to reduced NaV1.5 
expression will be an important first step 

(29) and found a higher mortality rate 
in patients homozygous for the C allele. 
Surprisingly, the rs1805126 genotype did 
not significantly associate with appropri-
ate ICD therapies (a surrogate marker of 
arrhythmic death). In addition, the authors 
did not find a significant association with 
electrocardiographic parameters, although 
the study was underpowered to do so. As 
previously stated, prolonged QRS duration 
is associated with increased morbidity and 
mortality in HF patients due to dyssynchro-
nous myocardial contraction; therefore, 
it will be important to reanalyze this asso-
ciation with increased patient enrollment 
or in another dataset, especially given the 
known association of rs1805126 with car-
diac conduction parameters (18). Similarly, 
these data should be analyzed for associa-
tions between the homozygous rs1805126 
genotype and cardiac resynchronization 
therapy, indicated for patients with signifi-
cant QRS prolongation and HF (30). Lastly, 
it would be of interest to note whether the 
CC genotype is associated with increased 
right ventricular pacing percentage, as this 
type of pacing produces myocardial dys-
synchrony and has been shown to reduce 
left ventricular ejection fraction and 
increase morbidity and mortality (31).

To explore the potential mechanism 
whereby reduced SCN5A expression is 

dependent regulation of SCN5A (Figure 1). 
As the rs1805126 variant does not alter the 
“seed” interaction sequence, the authors 
speculated and tested through computa-
tional means that the C allele produced a 
more favorable miR-24 interaction with the 
SCN5A transcript. In human heterologous 
expression systems, miR-24 suppressed 
NaV1.5 expression more significantly with 
the SCN5A C allele versus T allele. MiR-
24 mimics also reduced sodium current 
density in neonatal rat cardiomyocytes 
(NRCMs). In human heart samples, pres-
ence of the rs1805126 CC genotype was 
associated with lower levels  of SCN5A 
mRNA and NaV1.5 channel protein com-
pared to the TT genotype, whereas miR-24 
expression was similar between groups. 
Similar results were seen in expression 
quantitative trait loci (eQTL) studies (27, 
28) and analysis of hearts heterozygous for 
rs1805126, where the C allele was associ-
ated with lower SCN5A mRNA levels.

Clinical consequences of 
SCN5A modulation
To explore the clinical consequences of the 
rs1805126 variant in HF patients, Zhang et 
al. (20) examined the effect of rs1805126 
genotypes in cardiomyopathy patients with 
ICDs from the Genetic Risk Assessment 
of Defibrillator Events (GRADE) study 

Figure 1. Proposed link between microRNA-dependent regulation of SCN5A and disease progression. Genome-wide association studies (GWAS) have 
linked a synonymous SNP (rs1805126) in the SCN5A gene with electrocardiographic measures. (A) Ago2 HITS-CLIP data identify a microRNA-24 (miR-24) 
binding site immediately adjacent to this SNP. (B) Probability of Interaction by Target Accessibility (PITA) analysis indicates that the rs1805126 minor allele 
(C) is a thermodynamically more favorable miR-24 target compared to the major allele (T), resulting in greater SCN5A degradation and diminished NaV1.5 
expression. While conduction slowing is a predictable consequence of diminished sodium channel expression, Zhang and colleagues (22) show, surpris-
ingly, that reduced SCN5A expression is also associated with increased myocardial reactive oxygen species (ROS), and suggest that ROS accumulation 
promotes heart failure progression and increased nonarrhythmic mortality.
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Concluding remarks
The work of Zhang et al. (20) adds to the 
growing body of evidence that sequence 
variants that regulate SCN5A expres-
sion can have significant consequences 
on HF disease progression and mortality. 
Although the mechanism of worsening 
HF associated with rs1805126 will need 
further evaluation, these findings bring 
us one step closer to creating a genetic HF 
risk score, which can be used to personal-
ize therapies for this complex and growing 
patient population.
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