Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information

M Zuker, P Stiegler - Nucleic acids research, 1981 - academic.oup.com
M Zuker, P Stiegler
Nucleic acids research, 1981academic.oup.com
This paper presents a new computer method for folding an RNA molecule that finds a
conformation of minimum free energy using published values of stacking and destabilizing
energies. It is based on a dynamic programming algorithm from applied mathematics, and is
much more efficient, faster, and can fold larger molecules than procedures which have
appeared up to now in the biological literature. Its power is demonstrated in the folding of a
459 nucleotide immunoglobulin γ 1 heavy chain messenger RNA fragment. We go beyond …
Abstract
This paper presents a new computer method for folding an RNA molecule that finds a conformation of minimum free energy using published values of stacking and destabilizing energies. It is based on a dynamic programming algorithm from applied mathematics, and is much more efficient, faster, and can fold larger molecules than procedures which have appeared up to now in the biological literature. Its power is demonstrated in the folding of a 459 nucleotide immunoglobulin γ 1 heavy chain messenger RNA fragment. We go beyond the basic method to show how to incorporate additional information into the algorithm. This includes data on chemical reactivity and enzyme susceptibility. We illustrate this with the folding of two large fragments from the 16S ribosomal RNA of Escherichia coli.
Oxford University Press