Clostridium difficile Toxins: Mechanism of Action and Role in Disease

DE Voth, JD Ballard - Clinical microbiology reviews, 2005 - Am Soc Microbiol
Clinical microbiology reviews, 2005Am Soc Microbiol
As the leading cause of hospital-acquired diarrhea, Clostridium difficile colonizes the large
bowel of patients undergoing antibiotic therapy and produces two toxins, which cause
notable disease pathologies. These two toxins, TcdA and TcdB, are encoded on a
pathogenicity locus along with negative and positive regulators of their expression.
Following expression and release from the bacterium, TcdA and TcdB translocate to the
cytosol of target cells and inactivate small GTP-binding proteins, which include Rho, Rac …
Summary
As the leading cause of hospital-acquired diarrhea, Clostridium difficile colonizes the large bowel of patients undergoing antibiotic therapy and produces two toxins, which cause notable disease pathologies. These two toxins, TcdA and TcdB, are encoded on a pathogenicity locus along with negative and positive regulators of their expression. Following expression and release from the bacterium, TcdA and TcdB translocate to the cytosol of target cells and inactivate small GTP-binding proteins, which include Rho, Rac, and Cdc42. Inactivation of these substrates occurs through monoglucosylation of a single reactive threonine, which lies within the effector-binding loop and coordinates a divalent cation critical to binding GTP. By glucosylating small GTPases, TcdA and TcdB cause actin condensation and cell rounding, which is followed by death of the cell. TcdA elicits effects primarily within the intestinal epithelium, while TcdB has a broader cell tropism. Important advances in the study of these toxins have been made in the past 15 years, and these are detailed in this review. The domains, subdomains, and residues of these toxins important for receptor binding and enzymatic activity have been elegantly studied and are highlighted herein. Furthermore, there have been major advances in defining the role of these toxins in modulating the inflammatory events involving the disruption of cell junctions, neuronal activation, cytokine production, and infiltration by polymorphonuclear cells. Collectively, the present review provides a comprehensive update on TcdA and TcdB's mechanism of action as well as the role of these toxins in disease.
American Society for Microbiology