[PDF][PDF] Gene-targeting of Phd2 improves tumor response to chemotherapy and prevents side-toxicity

RL de Oliveira, S Deschoemaeker, AT Henze… - Cancer cell, 2012 - cell.com
Cancer cell, 2012cell.com
The success of chemotherapy in cancer treatment is limited by scarce drug delivery to the
tumor and severe side-toxicity. Prolyl hydroxylase domain protein 2 (PHD2) is an
oxygen/redox-sensitive enzyme that induces cellular adaptations to stress conditions.
Reduced activity of PHD2 in endothelial cells normalizes tumor vessels and enhances
perfusion. Here, we show that tumor vessel normalization by genetic inactivation of Phd2
increases the delivery of chemotherapeutics to the tumor and, hence, their antitumor and …
Summary
The success of chemotherapy in cancer treatment is limited by scarce drug delivery to the tumor and severe side-toxicity. Prolyl hydroxylase domain protein 2 (PHD2) is an oxygen/redox-sensitive enzyme that induces cellular adaptations to stress conditions. Reduced activity of PHD2 in endothelial cells normalizes tumor vessels and enhances perfusion. Here, we show that tumor vessel normalization by genetic inactivation of Phd2 increases the delivery of chemotherapeutics to the tumor and, hence, their antitumor and antimetastatic effect, regardless of combined inhibition of Phd2 in cancer cells. In response to chemotherapy-induced oxidative stress, pharmacological inhibition or genetic inactivation of Phd2 enhances a hypoxia-inducible transcription factor (HIF)-mediated detoxification program in healthy organs, which prevents oxidative damage, organ failure, and tissue demise. Altogether, our study discloses alternative strategies for chemotherapy optimization.
cell.com