Early postnatal GABAA receptor modulation reverses deficits in neuronal maturation in a conditional neurodevelopmental mouse model of DISC1

A Saito, Y Taniguchi, MD Rannals, EB Merfeld… - Molecular …, 2016 - nature.com
A Saito, Y Taniguchi, MD Rannals, EB Merfeld, MD Ballinger, M Koga, Y Ohtani, DA Gurley…
Molecular psychiatry, 2016nature.com
Exploring drug targets based on disease-associated molecular mechanisms during
development is crucial for the generation of novel prevention and treatment strategies for
neurodevelopmental psychiatric conditions. We report that prefrontal cortex (PFC)-specific
postnatal knockdown of DISC1 via in utero electroporation combined with an inducible
knockdown expression system drives deficits in synaptic GABA A function and dendritic
development in pyramidal neurons, as well as abnormalities in sensorimotor gating, albeit …
Abstract
Exploring drug targets based on disease-associated molecular mechanisms during development is crucial for the generation of novel prevention and treatment strategies for neurodevelopmental psychiatric conditions. We report that prefrontal cortex (PFC)-specific postnatal knockdown of DISC1 via in utero electroporation combined with an inducible knockdown expression system drives deficits in synaptic GABA A function and dendritic development in pyramidal neurons, as well as abnormalities in sensorimotor gating, albeit without profound memory deficits. We show for the first time that DISC1 is specifically involved in regulating cell surface expression of α2 subunit-containing GABA A receptors in immature developing neurons, but not after full maturation. Notably, pharmacological intervention with α2/3 subtype-selective GABA A receptor positive allosteric modulators during the early postnatal period ameliorates dendritic deficits and behavioral abnormalities induced by knockdown of DISC1. These findings highlight a critical role of DISC1-mediated disruption of postnatal GABA signaling in aberrant PFC maturation and function.
nature.com