[HTML][HTML] Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton

DD Sarbassov, SM Ali, DH Kim, DA Guertin, RR Latek… - Current biology, 2004 - cell.com
Current biology, 2004cell.com
The mammalian TOR (mTOR) pathway integrates nutrient-and growth factor-derived signals
to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR
is a large protein kinase and the target of rapamycin, an immunosuppressant that also
blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the
raptor and GβL proteins [1–3] to form a complex that is the target of rapamycin. Here, we
demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor …
Abstract
The mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GβL proteins [1–3] to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum[4], STE20p from S. pombe[5], and AVO3p from S. cerevisiae[6, 7]. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1 [6]. Consistent with this finding, the rictor-containing mTOR complex contains GβL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C α (PKCα) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals.
cell.com