New mechanism of X-linked anhidrotic ectodermal dysplasia with immunodeficiency: impairment of ubiquitin binding despite normal folding of NEMO protein

M Hubeau, F Ngadjeua, A Puel, L Israel… - Blood, The Journal …, 2011 - ashpublications.org
M Hubeau, F Ngadjeua, A Puel, L Israel, J Feinberg, M Chrabieh, K Belani, C Bodemer…
Blood, The Journal of the American Society of Hematology, 2011ashpublications.org
Nuclear factor-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase
complex, is a critical component of the NF-κB pathway. Hypomorphic mutations in the X-
linked human NEMO gene cause various forms of anhidrotic ectodermal dysplasia with
immunodeficiency (EDA-ID). All known X-linked EDA-ID–causing mutations impair NEMO
protein expression, folding, or both. We describe here 2 EDA-ID–causing missense
mutations that affect the same residue in the CC2-LZ domain (D311N and D311G) that do …
Abstract
Nuclear factor-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase complex, is a critical component of the NF-κB pathway. Hypomorphic mutations in the X-linked human NEMO gene cause various forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID). All known X-linked EDA-ID–causing mutations impair NEMO protein expression, folding, or both. We describe here 2 EDA-ID–causing missense mutations that affect the same residue in the CC2-LZ domain (D311N and D311G) that do not impair NEMO production or folding. Structural studies based on pull-down experiments showed a defect in noncovalent interaction with K63-linked and linear polyubiquitin chains for these mutant proteins. Functional studies on the patients' cells showed an impairment of the classic NF-κB signaling pathways after activation of 2 NEMO ubiquitin-binding–dependent receptors, the TNF and IL-1β receptors, and in the CD40-dependent NF-κB pathway. We report the first human NEMO mutations responsible for X-linked EDA-ID found to affect the polyubiquitin binding of NEMO rather than its expression and folding. These experiments demonstrate that the binding of human NEMO to polyubiquitin is essential for NF-κB activation. They also demonstrate that the normal expression and folding of NEMO do not exclude a pathogenic role for NEMO mutations in patients with EDA-ID.
ashpublications.org