Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and …

T Yamamori, H Yasui, M Yamazumi, Y Wada… - Free Radical Biology …, 2012 - Elsevier
T Yamamori, H Yasui, M Yamazumi, Y Wada, Y Nakamura, H Nakamura, O Inanami
Free Radical Biology and Medicine, 2012Elsevier
Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis
products that contain some reactive oxygen species (ROS), ROS are also suggested to be
released from biological sources in irradiated cells. It is now becoming clear that these ROS
generated secondarily after Ir have a variety of biological roles. Although mitochondria are
assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated
how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir …
Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that Ir-induced G2/M arrest contributed to the increase in the mitochondrial ROS level by accumulating cells in the G2/M phase.
Elsevier