Modulation of renal-specific oxidoreductase/myo-inositol oxygenase by high-glucose ambience

B Nayak, P Xie, S Akagi, Q Yang… - Proceedings of the …, 2005 - National Acad Sciences
B Nayak, P Xie, S Akagi, Q Yang, L Sun, J Wada, A Thakur, FR Danesh, SS Chugh
Proceedings of the National Academy of Sciences, 2005National Acad Sciences
Biological properties of renal-specific oxidoreductase (RSOR), characteristics of its
promoter, and underlying mechanisms regulating its expression in diabetes were analyzed.
RSOR expression, normally confined to the renal cortex, was markedly increased and
extended into the outer medullary tubules in db/db mice, a model of type 2 diabetes.
Exposure of LLCPK cells to d-glucose resulted in a dose-dependent increase in RSOR
expression and its enzymatic activity. The latter was related to one of the glycolytic enzymes …
Biological properties of renal-specific oxidoreductase (RSOR), characteristics of its promoter, and underlying mechanisms regulating its expression in diabetes were analyzed. RSOR expression, normally confined to the renal cortex, was markedly increased and extended into the outer medullary tubules in db/db mice, a model of type 2 diabetes. Exposure of LLCPK cells to d-glucose resulted in a dose-dependent increase in RSOR expression and its enzymatic activity. The latter was related to one of the glycolytic enzymes, myo-inositol oxygenase. The increase in activity was in proportion to serum glucose concentration. The RSOR expression also increased in cells treated with various organic osmolytes, e.g., sorbitol, myoinositol, and glycerolphosphoryl-choline and H2O2. Basal promoter activity was confined to –1,252 bp upstream of ATG, and it increased with the treatment of high glucose and osmolytes. EMSAs indicated an increased binding activity with osmotic-, carbohydrate-, and oxidant-response elements in cells treated with high glucose and was abolished by competitors. Supershifts, detected by anti-nuclear factor of activated T cells, and carbohydrate-response-element-binding protein established the binding specificity. Nuclear factor of activated T cells tonicity-enhancer-binding protein and carbohydrate-response-element-binding protein had increased nuclear expression in cells treated with high glucose. The activity of osmotic-response element exhibited a unique alternate binding pattern, as yet unreported in osmoregulatory genes. Data indicate that RSOR activity is modulated by diverse mechanisms, and it is endowed with dual properties to channel glucose intermediaries, characteristic of hepatic aldehyde reductases, and to maintain osmoregulation, a function of renal medullary genes, e.g., aldose reductase, in diabetes.
National Acad Sciences