[HTML][HTML] Giant axonal neuropathy–associated gigaxonin mutations impair intermediate filament protein degradation

S Mahammad, SNP Murthy, A Didonna… - The Journal of …, 2013 - Am Soc Clin Investig
S Mahammad, SNP Murthy, A Didonna, B Grin, E Israeli, R Perrot, P Bomont, JP Julien
The Journal of clinical investigation, 2013Am Soc Clin Investig
Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations
in the GAN gene (encoding for gigaxonin), which is predicted to be an E3 ligase adaptor. In
GAN, aggregates of intermediate filaments (IFs) represent the main pathological feature
detected in neurons and other cell types, including patients' dermal fibroblasts. The
molecular mechanism by which these mutations cause IFs to aggregate is unknown. Using
fibroblasts from patients and normal individuals, as well as Gan–/–mice, we demonstrated …
Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations in the GAN gene (encoding for gigaxonin), which is predicted to be an E3 ligase adaptor. In GAN, aggregates of intermediate filaments (IFs) represent the main pathological feature detected in neurons and other cell types, including patients’ dermal fibroblasts. The molecular mechanism by which these mutations cause IFs to aggregate is unknown. Using fibroblasts from patients and normal individuals, as well as Gan–/– mice, we demonstrated that gigaxonin was responsible for the degradation of vimentin IFs. Gigaxonin was similarly involved in the degradation of peripherin and neurofilament IF proteins in neurons. Furthermore, proteasome inhibition by MG-132 reversed the clearance of IF proteins in cells overexpressing gigaxonin, demonstrating the involvement of the proteasomal degradation pathway. Together, these findings identify gigaxonin as a major factor in the degradation of cytoskeletal IFs and provide an explanation for IF aggregate accumulation, the subcellular hallmark of this devastating human disease.
The Journal of Clinical Investigation