Recently published - More

Abstract

Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy.

Authors

Jessica Lauriol, Janel R. Cabrera, Ashbeel Roy, Kimberly Keith, Sara M. Hough, Federico Damilano, Bonnie Wang, Gabriel C. Segarra, Meaghan E. Flessa, Lauren E. Miller, Saumya Das, Roderick Bronson, Kyu-Ho Lee, Maria I. Kontaridis

×

Abstract

The immune response against transplanted allografts is one of the most potent reactions mounted by the immune system. The acute rejection response has been attributed to donor dendritic cells (DCs), which migrate to recipient lymphoid tissues and directly activate alloreactive T cells against donor MHC molecules. Here, using a murine heart transplant model, we determined that only a small number of donor DCs reach lymphoid tissues and investigated how this limited population of donor DCs efficiently initiates the alloreactive T cell response that causes acute rejection. In our mouse model, efficient passage of donor MHC molecules to recipient conventional DCs (cDCs) was dependent on the transfer of extracellular vesicles (EVs) from donor DCs that migrated from the graft to lymphoid tissues. These EVs shared characteristics with exosomes and were internalized or remained attached to the recipient cDCs. Recipient cDCs that acquired exosomes became activated and triggered full activation of alloreactive T cells. Depletion of recipient cDCs after cardiac transplantation drastically decreased presentation of donor MHC molecules to directly alloreactive T cells and delayed graft rejection in mice. These findings support a key role for transfer of donor EVs in the generation of allograft-targeting immune responses and suggest that interrupting this process has potential to dampen the immune response to allografts.

Authors

Quan Liu, Darling M. Rojas-Canales, Sherrie J. Divito, William J. Shufesky, Donna Beer Stolz, Geza Erdos, Mara L.G. Sullivan, Gregory A. Gibson, Simon C. Watkins, Adriana T. Larregina, Adrian E. Morelli

×

Abstract

Streptococcus pneumoniae (pneumococcus) is the primary cause of bacterial meningitis. Pneumococcal bacteria penetrates the blood-brain barrier (BBB), but the bacterial factors that enable this process are not known. Here, we determined that expression of pneumococcal pilus-1, which includes the pilus adhesin RrgA, promotes bacterial penetration through the BBB in a mouse model. S. pneumoniae that colonized the respiratory epithelium and grew in the bloodstream were chains of variable lengths; however, the pneumococci that entered the brain were division-competent, spherical, single cocci that expressed adhesive RrgA–containing pili. The cell division protein DivIVA, which is required for an ovoid shape, was localized at the poles and septum of pneumococcal chains of ovoid, nonseparated bacteria, but was absent in spherical, single cocci. In the bloodstream, a small percentage of pneumococci appeared as piliated, RrgA-expressing, DivIVA-negative single cocci, suggesting that only a minority of S. pneumoniae are poised to cross the BBB. Together, our data indicate that small bacterial cell size, which is signified by the absence of DivIVA, and the presence of an adhesive RrgA-containing pilus-1 mediate pneumococcal passage from the bloodstream through the BBB into the brain to cause lethal meningitis.

Authors

Federico Iovino, Disa L. Hammarlöf, Genevieve Garriss, Sarah Brovall, Priyanka Nannapaneni, Birgitta Henriques-Normark

×

Abstract

Mutations in the T-box transcription factor TBX20 are associated with multiple forms of congenital heart defects, including cardiac septal abnormalities, but our understanding of the contributions of endocardial TBX20 to heart development remains incomplete. Here, we investigated how TBX20 interacts with endocardial gene networks to drive the mesenchymal and myocardial movements that are essential for outflow tract and atrioventricular septation. Selective ablation of Tbx20 in murine endocardial lineages reduced the expression of extracellular matrix and cell migration genes that are critical for septation. Using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we identified accessible chromatin within endocardial lineages and intersected these data with TBX20 ChIP-seq and chromatin loop maps to determine that TBX20 binds a conserved long-range enhancer to regulate versican (Vcan) expression. We also observed reduced Vcan expression in Tbx20-deficient mice, supporting a direct role for TBX20 in Vcan regulation. Further, we show that the Vcan enhancer drove reporter gene expression in endocardial lineages in a TBX20–binding site–dependent manner. This work illuminates gene networks that interact with TBX20 to orchestrate cardiac septation and provides insight into the chromatin landscape of endocardial lineages during septation.

Authors

Cornelis J. Boogerd, Ivy Aneas, Noboru Sakabe, Ralph J. Dirschinger, Quen J. Cheng, Bin Zhou, Ju Chen, Marcelo A. Nobrega, Sylvia M. Evans

×

Abstract

Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein–induced neuropathology. In mice expressing a human α-synucleinopathy–associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein–induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies.

Authors

Saurav Brahmachari, Preston Ge, Su Hyun Lee, Donghoon Kim, Senthilkumar S. Karuppagounder, Manoj Kumar, Xiaobo Mao, Yunjong Lee, Olga Pletnikova, Juan C. Troncoso, Valina L. Dawson, Ted M. Dawson, Han Seok Ko

×

Abstract

Pain is a life-long symptom in sickle cell disease (SCD) and a predictor of disease progression and mortality, but little is known about its molecular mechanisms. Here, we characterized pain in a targeted knockin mouse model of SCD (TOW mouse) that exclusively expresses human alleles encoding normal α- and sickle β-globin. TOW mice exhibited ongoing spontaneous pain behavior and increased sensitivity to evoked pain compared with littermate control mice expressing normal human hemoglobins. PKCδ activation was elevated in the superficial laminae of the spinal cord dorsal horn in TOW mice, specifically in GABAergic inhibitory neurons. Functional inhibition and neuron-specific silencing of PKCδ attenuated spontaneous pain, mechanical allodynia, and heat hyperalgesia in TOW mice. Furthermore, we took a hematopoietic stem cell transplantation approach to generating a SCD model in PKCδ-deficient mice. Neither spontaneous pain nor evoked pain was detected in the mice lacking PKCδ despite full establishment of SCD phenotypes. These findings support a critical role of spinal PKCδ in the development of chronic pain in SCD, which may become a potential target for pharmacological interventions.

Authors

Ying He, Diana J. Wilkie, Jonathan Nazari, Rui Wang, Robert O. Messing, Joseph DeSimone, Robert E. Molokie, Zaijie Jim Wang

×

Abstract

Inflammatory myofibroblastic tumors (IMTs) are characterized by myofibroblast proliferation and an inflammatory cell infiltrate. Little is known about the molecular pathways that precipitate IMT formation. Here, we report the identification of somatic mutations in UPF1, a gene that encodes an essential component of the nonsense-mediated RNA decay (NMD) pathway, in 13 of 15 pulmonary IMT samples. The majority of mutations occurred in a specific region of UPF1 and triggered UPF1 alternative splicing. Several mRNA targets of the NMD pathway were upregulated in IMT samples, indicating that the UPF1 mutations led to reduced NMD magnitude. These upregulated NMD targets included NIK mRNA, which encodes a potent activator of NF-κB. In human lung cells, UPF1 depletion increased expression of chemokine-encoding genes in a NIK-dependent manner. Elevated chemokines and IgE class switching events were observed in IMT samples, consistent with NIK upregulation in these tumors. Together, these results support a model in which UPF1 mutations downregulate NMD, leading to NIK-dependent NF-κB induction, which contributes to the immune infiltration that is characteristic of IMTs. The molecular link between the NMD pathway and IMTs has implications for the diagnosis and treatment of these tumors.

Authors

JingWei Lu, Terra-Dawn Plank, Fang Su, XiuJuan Shi, Chen Liu, Yuan Ji, ShuaiJun Li, Andrew Huynh, Chao Shi, Bo Zhu, Guang Yang, YanMing Wu, Miles F. Wilkinson, YanJun Lu

×




Advertisement

June 2016

126 6 cover

June 2016 Issue

On the cover:
Molecular mimicry promotes autoimmunity

On page 2191, Cole et al. present structural data for a specific human T cell receptor (TCR) clone from a type 1 diabetic patient that is known to mediate the destruction of insulin-expressing β cells. The cover image shows this TCR (green) interacting with a bacterial antigen (yellow sticks) presented by human leukocyte antigen A*0201 (purple).

×
Jci tm 2016 06

June 2016 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Extracellular Vesicles

Series edited by Laurence Zitvogel

Cell-to-cell communication is an essential component in multicellular organisms, allowing for rapid, coordinated responses to changes within the environment. Classical signaling mediators include direct cell-cell contact as well as secreted factors, such as cytokines, metabolites, and hormones. In the past decade, extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, have emerged as important mediators of intercellular communication. EVs are double-membrane vesicles containing cargoes of multiple proteins, lipids, and nucleic acids, which are derived from their cells of origin, and EV cargoes can change depending on the status of their originating cells. Importantly, EVs are found in all body fluids and can carry their cargoes to distant sites within the body as well as neighboring cells. Reviews in this series discuss the role of EV-mediated signaling in physiological and pathophysiological conditions, including infection, host immune responses, and cancer. Additionally, these reviews cover the potential clinical use of EVs as therapeutics and diagnostic biomarkers.

×