Abstract

Ritonavir (RTV) is on the World Health Organization’s list of essential medicines for antiretroviral therapy, but can cause hepatotoxicity by unknown mechanisms. Multiple clinical studies found that hepatotoxicity occurred in 100% of participants who were pretreated with rifampicin or efavirenz followed by RTV-containing regimens. Both rifampicin and efavirenz are activators of the pregnane X receptor (PXR), a transcription factor with marked interspecies differences in ligand-dependent activation. Using PXR-humanized mouse models, we recapitulated the RTV hepatotoxicity observed in the clinic. PXR was found to modulate RTV hepatotoxicity through CYP3A4-dependent pathways involved in RTV bioactivation, oxidative stress, and endoplasmic reticulum stress. In summary, the current work demonstrated the essential roles of human PXR and CYP3A4 in RTV hepatotoxicity, which can be applied to guide the safe use of RTV-containing regimens in the clinic.

Authors

Amina I. Shehu, Jie Lu, Pengcheng Wang, Junjie Zhu, Yue Wang, Da Yang, Deborah McMahon, Wen Xie, Frank J. Gonzalez, Xiaochao Ma

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement