Abstract

A monoclonal antibody, selected for reactivity with the Epstein-Barr virus (EBV)-encoded antigen EBNA-1, exhibited strong reactivity with the synovial lining cells in joint biopsies from 10 of 12 patients with rheumatoid arthritis (RA) and adherent cells eluted from these tissues. No staining of RA synovial membrane frozen tissue sections or eluted synovial-lining cells was obtained with monoclonal antibodies directed against other EBV-encoded antigens (anti-p160, anti-gp200/350) or with monoclonal antibodies directed against antigens encoded by cytomegalovirus, herpes simplex viruses, or human T cell leukemia virus type I. Among 12 osteoarthritis and normal synovial biopsies only rare reactive cells were noted. Characterization of the antigen(s) in RA synovium by the Western immunoblotting technique revealed a 62,000-molecular-weight (mol-wt) protein, in contrast to the 70,000-85,000-mol-wt EBNA-1 antigen found in EBV-transformed cells. The structural basis for the cross-reactivity of the RA synovial membrane 62,000-mol-wt protein and the EBNA-1 antigen appears to reside in the glycine-alanine rich region of these molecules. A rabbit antibody directed against a synthetic peptide (IR3-VI-2) derived from the glycine-alanine-rich region of EBNA-1 reacted with the 70,000-85,000-mol-wt EBNA-1 antigen in EBV-infected cells and with the 62,000-mol-wt molecule in RA synovial membrane extracts. Since strong antibody responses to EBNA-1 are known to exist in RA patients, these results suggest that immune responses to a cross-reactive antigen may play a role in the pathogenesis of RA.

Authors

R Fox, R Sportsman, G Rhodes, J Luka, G Pearson, J Vaughan

×

Other pages: